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Abstract. Model data integration (MDI) studies are key to
parameterize ecosystem models that synthesize our knowl-
edge about ecosystem function. The use of diverse data
sets, however, results in strongly imbalanced contributions of
data streams with model fits favoring the largest data stream.
This imbalance poses new challenges in the identification of
model deficiencies. A standard approach for balancing is to
attribute weights to different data streams in the cost func-
tion. However, this may result in overestimation of posterior
uncertainty.

In this study, we propose an alternative: the parameter
block approach. The proposed method enables joint opti-
mization of different blocks, i.e., subsets of the parameters,
against particular data streams. This method is applicable
when specific parameter blocks are related to processes that
are more strongly associated with specific observations, i.e.,
data streams. A comparison of different approaches using
simple artificial examples and the DALEC ecosystem model
is presented.

The unweighted inversion of a DALEC model variant,
where artificial structural errors in photosynthesis calculation
had been introduced, failed to reveal the resulting biases in
fast processes (e.g., turnover). The posterior bias emerged
only in parameters related to slower processes (e.g., carbon
allocation) constrained by fewer data sets. On the other hand,
when weighted or blocked approaches were used, the intro-
duced biases were revealed, as expected, in parameters of
fast processes.

Ultimately, with the parameter block approach, the trans-
fer of model error was diminished and at the same time
the overestimation of posterior uncertainty associated with
weighting was prevented.

Correspondence to: T. Wutzler (twutz@bgc-jena.mpg.de)

1 Introduction

Evaluating the sensitivities of ecosystem responses to en-
vironmental conditions is essential to understand interac-
tions between the terrestrial biosphere and the climate sys-
tem. Terrestrial ecosystem models formalize hypotheses
about the internal processes and functional responses of veg-
etation and soil to variations in environmental variables. The
parametrization of these mechanisms is an essential step to
evaluate the appropriateness of different model structures
and the embedded hypotheses about ecosystem function.

Model data integration (MDI) methods, which are also
referred to as model data fusion, model data assimilation,
model data synthesis, or inverse modeling, present a frame-
work to parameterize models based on the information con-
tent of observations (Richardson et al., 2010; van Oijen
et al., 2005; Braakhekke et al., 2013). By minimizing the
differences between modeled and observed quantities and
considering the uncertainty resulting from (1) observations,
(2) model parameters and drivers, and (3) model structure
(Keenan et al., 2011), MDI approaches support data analysis,
upscaling, prediction, and exploration of different hypothe-
ses about ecosystem processes. MDI exercises are, therefore,
very sensitive to the treatment of different sources of uncer-
tainty, which is a prerequisite for comprehensive evaluation
of the modeling structure.

The usage of multiple data streams in MDI is a promising
approach to identify model structural error by inspecting the
model-data mismatch (Fox et al., 2009; Williams et al., 2009;
Carvalhais et al., 2010). For example, Braakhekke et al.
(2014) showed that adding an extra data stream of radiocar-
bon to the MDI leads to a different conclusion on the relative
importance of transport and soil organic matter (SOM) stabi-
lization processes.

However, one of the challenges encountered in MDI using
ecological data is the acknowledgment of imbalanced data
streams, i.e., sets of measurements whose number of records
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and/or the uncertainty of single records differ in orders of
magnitude. In ecosystem level studies, rich data from auto-
mated high frequency measurements such as eddy covariance
(EC) or from Earth observation systems are combined with
sparse data from labor-intensive field work such as measure-
ment of litterfall, soil carbon stocks, or radiocarbon data of
ecosystem compartments (Richardson et al., 2010; Carval-
hais et al., 2010; Braakhekke et al., 2014).

One problem associated with imbalanced data streams is
that model structural uncertainties (or in short, model un-
certainty) (Abramowitz et al., 2008) that are related to pro-
cesses, which are strongly constrained by rich data streams,
can be transferred to biases in posterior parameters of less
constrained processes (best clarified with the simple example
in section 3.4). Inclusion of additional sparse data streams
that constrain the other processes will be of little use to coun-
teract this transfer of structural model uncertainty unless the
cost function is modified.

The underlying problem is that different sources of uncer-
tainty are supposed to behave differently. Variance scales in-
versely with the number of observations (detailed in section
3.2). Uncertainty of the estimate is lower with more observa-
tions. This is a desired property for measurement uncertainty.
However, there is also model uncertainty, i.e., the inability of
the model structure to fully match the underlying processes.
In multiple constraints approaches, often there exists a set of
parameters where model predictions match one data stream
and not the other, while with a different set of parameters
the other data stream is matched instead. The pitfall is that
this trade-off is preferentially allocated to match the rich data
streams due to the scaling of variance with number of obser-
vations. Hence, errors may incorrectly emerge in parameters
of less constrained processes. This may lead to a false iden-
tification of processes where the model structure needs to be
improved.

Various methods have been proposed to account for model
uncertainty. A simple way is to explicitly include an error
term based on previous model fits (see examples in Trudinger
et al., 2007; Kuppel et al., 2013). However, assigning record-
specific or data stream specific weights implies that previ-
ously bad-fitting observations get low weight in the optimiza-
tion. Consequently, model error in different processes can be
transferred to processes constrained by the low-weight obser-
vations and, therefore, conceal other structural model limi-
tations. Another method to deal with model uncertainty is
to entirely neglect it in the cost function and assume mea-
surement uncertainty only. This method is valid when ob-
servation errors are large and the model can flexibly adapt
to the given data (e.g. interactive discussion of Braakhekke
et al., 2013). An alternative method of accounting for model
uncertainty, is to specify a prior distribution of combined
data and model uncertainty of different data streams and in-
tegrate it to obtain a marginal distribution of model param-
eters (Appendix A of Kavetski et al., 2006). This method
can be extended by including additional sources of uncertain-

ties in the distribution of the model-data residuals (Schoups
and Vrugt, 2010). Parameters related to combined data, in-
put, and model uncertainty are estimated together with other
model parameters as metaparameter or nuisance parameter
from the fit. Such methods are suitable to quantify uncer-
tainty of predictions but are less effective to identify inade-
quate model structure, as shown in section 3.4.

In summary, these methods account for model uncertainty
and dealing with incomplete characterizations of model and
data uncertainty. However, they do not prevent the transfer of
model uncertainty to biases in parameters of less constrained
processes.

Two published approaches, the Pareto-based optimizations
and the Approximate Bayesian Computation (ABC), explic-
itly represent the inconsistencies between data streams for a
given model. With Pareto-based optimization (Vincent and
Grantham, 1981; Vrugt et al., 2003), all parameters are op-
timized against multiple constraints using several cost func-
tions. The result, then, becomes a numeric vector instead of
a scalar. The solution to the inversion problem is, in gen-
eral, no longer a single “best” parameter set but consists of
a Pareto set of solutions corresponding to various trade-offs
between the objectives. Approximate Bayesian Computation
(ABC) (Vrugt and Sadegh, 2013), uses one or multiple di-
agnostic application-specific summary metrics that have a
better diagnostic power than a distribution based metric of
the residual errors. These summary metrics are chosen with-
out constraints of size or information content of the input
data streams. Hence, ABC is robust against imbalanced data
streams and is suitable to diagnose model structural inade-
quacy. However, it is less suitable for MDI studies, which
aim at propagating the information in data streams to infor-
mation on model parameters. In this paper, however, we fo-
cus on approaches that result in a single posterior distribution
of the parameter set and that take formal account of the size
and measurement uncertainties of the input data streams.

The objective of this paper is to explore several approaches
to the problem of balancing model structural uncertainty
when using imbalanced data streams. We aim at (1) mak-
ing the reader aware of the problem of transfer of bias with
imbalanced data streams; (2) proposing a new “parame-
ter blocks” approach that optimizes subsets of parameters
against different data streams; and (3) discussing weighting
and alternative approaches by using examples of increasing
complexity.

The paper is structured as follows: in section 2 the meth-
ods are explained. Sections 3.1 and 3.2 focus on the effects of
weighting. Section 3.3 presents the new parameter block ap-
proach. Next a comparison of the three approaches of (1) an
unweighted sum of squares, (2) a weighted sum of squares,
and (3) the parameter block approach is presented using ex-
amples of increasing complexity. In section 3.4 a simple in-
structive example is used, while in sections 3.5 and 3.6 the
consequences for the DALEC ecosystem model are studied.
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Finally, the results are summarized and concluded in section
4.

2 Methods

2.1 Model Data Integration

MDI approaches rely on a combination of experimental data,
a priori information, and theoretical understanding of the sys-
tem. The a posteriori state of information is expressed by
a joint probability density function (PDF) of the observa-
tional data (o) and model parameters (θ) (Tarantola, 2005,
eq.1.83). The posterior probability density of model param-
eters π(θ|o) (in short posterior) is often of high interest. If
a priori information and uncertainty of data are assumed to
follow Gaussian distribution, the posterior information about
model parameters can be expressed based on cost function
S(θ) as,

π(θ)=K exp[−1

2
(S(θ)+Sprior(θ))] (1a)

S(θ)= (o−g(θ))TC−1
D (o−g(θ)) (1b)

Sprior(θ)= (θ−θprior)TC−1
M (θ−θprior), (1c)

where K is a normalizing constant to ensure that the inte-
gral of π sums to 1, g(θ) is the model prediction of ob-
servations (o), CD is the combined model and data uncer-
tainty expressed as a covariance matrix. Prior knowledge
of parameters is expressed by a multivariate Gaussian den-
sity with mean θprior and covariance matrix CM . The prior
or data uncertainty, however, may deviate from Gaussian as-
sumption. Although it is possible to derive formulations for
other distributions as well, the multivariate normal is often
the most conservative case for multidimensional parameter
spaces without additional information on the specific shape
or correlations among parameters or data streams (Gelman
et al., 2003).
S(θ) is directly related to the negative log-likelihood.

Hence, by minimizing S(θ), maximum likelihood estimates
of θ can be calculated. By explicitly solving eq. 1 or draw-
ing a sample by MC simulation from this PDF, any statistics
about the posterior can be estimated. Note, however, that the
posterior estimate depends on the knowledge or estimate of
the model and data uncertainties (matrix CD).

With multiple data streams, the covariance matrix CD is
composed of blocks for given data streams and zero corre-
lation between observations of different streams. If all the
observation errors are independent (also within block), the
cost function S(θ) simplifies to a sum of the misfits Sk for a
data stream k.

S(θ)=
∑
k

Sk(θ) (2a)

Sk(θ)=
∑
i

(oi−g(θ))2

σ2
i

(2b)

σ2
i =σ2

o,i+σ
2
m,i≈σ2

o,i, (2c)

where σ2
i is the sum of variances of measurement errors,

σ2
o,i, and model structural errors, σ2

m,i, for observation and
prediction i, respectively. The uncertainty is often approx-
imated as measurement uncertainty only. Note that even if
independence of observations is violated by autocorrelation,
the above formula (2) can be used with adjusted effective
variance (Emery et al., 2007).

To estimate posterior parameters and their uncertainty
(probability density function, PDF), equations 2 are used
as a cost function with an adaptive Monte Carlo Markov
Chain (MCMC) sampling for all unweighted scenarios of
this study. Prediction uncertainty is estimated by running the
model based on parameters sampled from posterior param-
eter distribution. Specifically, Differential Evolution Monte
Carlo sampling is used by adopting past states (ter Braak and
Vrugt, 2008) with four independent populations consisting
of four chains each.

2.2 DALEC Model and Observation Data from How-
land Forest

For the results presented in section 3.5, the simulations
from a simple process-based ecosystem model of carbon dy-
namics, the Data Assimilation Linked Ecosystem Carbon
(DALEC) (Williams et al., 2005), are used. Carbon, assimi-
lated by plants through photosynthesis, cycles through differ-
ent vegetation and soil pools based on simulated allocation,
litterfall, and decomposition processes. These processes are
driven by meteorological forcing and controlled by parame-
ters describing the sensitivities and the compartmental car-
bon cycling within and between plants and soil.

The DALEC model has been used in the study of ecosys-
tem dynamics (Williams et al., 2005), to evaluate different
optimization algorithms (Fox et al., 2009), to investigate the
role of multiple constraints approaches in parameter estima-
tion (Richardson et al., 2010), and to study the separation of
model from driver errors in predictive uncertainty (Spadav-
ecchia et al., 2011).

DALEC considers a labile pool in vegetation, which is re-
plenished by carbon from leaves before senescence and fu-
els the leaf production in the next spring. The labile pool
is largely decoupled from forest biomass dynamics (Chuter,
2013).

Here we rely on the inversion of 15 parameters and ini-
tial conditions for the DALEC model (Table 1) to explore the
impacts of imbalanced data streams on estimations of param-
eters and the resulting inferences. The other nine parameters
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and initial conditions required by the DALEC model were
fixed at the parameter values from previous own model in-
versions.

To obtain the the results in section 3.6, DALEC parame-
ters were inverted by fitting to 10-years observations of eddy
covariance-based net ecosystem exchange (NEE) (Hollinger
et al., 2004; Hollinger and Richardson, 2005), soil respira-
tion, and litterfall at the Howland forest. The data set, com-
piled for an intercomparison study (T. F. Keenan, personal
communication 2013), was previously used in a study by
Richardson et al. (2010). Parameter σi in eq. 2c was set
as measurement uncertainty.

The observation uncertainties increased with the magni-
tude of the measurements (T. F. Keenan, personal communi-
cation 2013). They are expressed as,

σNEE =

{
0.12 NEE2+0.19 NEE+0.16, if NEE> 0.

−0.19 NEE+0.76, otherwise.

σLitterfall =0.2Litterfall

σSResp =0.02+0.35SResp
(3)

3 Results and Discussion

3.1 Why Not to Weight - Inflating Posterior Uncertainty

In order to increase the relative influence of sparse data
streams in the cost function, the summation terms in cost
function (eq. 2a) can be replaced by weighted sums (4a),
with the weights wk inversely proportional to the number of
observations in data stream k.

S(θ)=
∑
k

wkSk(θ) (4a)

wk =1/nk (4b)

In effect, this changes the prescribed uncertainty of the
model-observation residuals σ2

i as,

Sw,k =wkSk =
∑
i

wk
(oi−g(θ))2

σ2
i

=
∑
i

(oi−g(θ))2

σ2
w,i

,

(5a)

with σ2
w,i=

σ2
i

wk
(5b)

Hence, weighting by the inverse of the number of obser-
vations (wk = 1/nk) has the same effect as prescribing an
increase of measurement variance by a factor of nk.

The effect is demonstrated with a basic example of a single
downweighted data stream. Artificial observations (nk =9)

0

2

4

6

8

−4 0 4
m

−
 L

og
Li

ke
lih

oo
d

scenario

unweighted

aggregated

weighted

Fig. 1: Log-likelihood profiles, 1/2S(m), (Hilborn and Man-
gel, 1997) of the mean of observations. Horizontal lines de-
pict the level of the minimum +1.92. Above this level pa-
rameter values differ significantly (α=5%) from the best es-
timate. Scenario descriptions are given in text section 3.1.
Note the flattening of the surface and the increased param-
eter confidence interval with weighting of the data streams.

were sampled from a normal distribution around 0 with a
variance σ2

i =9 in three scenarios. The single parameter of
the model, θ= (m), corresponded to the single model pre-
diction, namely the mean of observations g(m)=m.

The shape of the negative log-likelihood (i.e., half the cost
function) as a function of the observation mean, 1/2S(m),
was examined with the following scenarios.

Unweighted: All the observations were part of an un-
weighted cost function (eq. 2a). The shape of the corre-
sponding log-likelihood function is displayed as the solid red
line in fig. 1.

Aggregated: Only the mean of the observations was part of
the cost function. The corresponding standard error was cal-
culated by usual error propagation: σm=σi/

√
n=
√
9/
√
9.

The likelihood profile (short dashed green line in fig. 1) was
lower than that in the unweighted scenario but had the same
curvature. As expected, the range of confidence interval, i.e.,
where the likelihood curve is below the horizontal line, was
the same as in the unweighted scenario ( ±2σm).

Weighted: All the observations were part of a cost func-
tion, but the data streams were weighted by the number of
observations w1 = 1/n (eq. 4a). The corresponding likeli-
hood profile (long dashed blue line in fig. 1) was much flatter
than the other two cases. Hence, the confidence interval of
the estimated parameter was much larger. This is caused by
the inflation of variance of observations by a factor of n=9.

The weighting essentially ignores the additional certainty
that can be acquired by using more observations. This results
in an overly wide posterior distribution of parameters and a
large uncertainty envelope of predictions. While this is ob-
vious in the simple example shown here, the same effect can
be expected to hold true in a more complex setting involving
multiple imbalanced data streams. In addition, the choice
of the weights also introduces some subjectivity because the
number of records depends on preaggregation of measure-
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Table 1: Description and prior probability distribution of the optimized DALEC model parameters and initial conditions. The
decay rates have been inferred at log-transformed scale. For each parameter, a normal distribution was prescribed so that the
95% confidence range matched the minimum and maximum limits. For values outside these limits, the prior was set to zero,
i.e., values were rejected, resulting in a truncated Gaussian prior.

Unit Minimum Maximum Trans Description

Cfmax gC/m2 100 500 Maximum foliage carbon pool
Clab0 gC/m2 50 500 Initial value of labile carbon

Et 1/◦C 0.01 0.2 Parameter in exponential temperature rate modifier
Fg 1 0.4 0.9 Fraction of GPP used for growth respiration
Fll 1 0.1 0.5 Fraction of C in leaf loss transferred to litter
Flr 1 0.01 0.5 Fraction of labile transfers respired
Fnf 1 0.5 0.9 Fraction of NPP allocated to foliage
Fnrr 1 0.1 0.5 Fraction of NPP2 allocated to roots
Lfall ◦C 10 20 Minimum daily temperature causing leaf fall
Lout ◦C 150 250 Value of Growing degree days causing leaf out
Pr 1 5 15 Nitrogen use efficiency parameter (a1) in the canopy model

pRaBelow 1 0.1 0.5 Autotrophic respiration from below ground
Tf 1/day 1E-4 0.2 log Turnover rate of foliage
Tl 1/day 1E-6 0.01 log Turnover rate of litter

Tlab 1/day 1E-4 0.1 log Turnover rate of labile carbon

ments and sampling frequency (e.g., the Unweighted versus
Aggregated scenarios above). From a perspective of MDI,
assuming a perfect model, weighting yields a conservative
posterior parameter uncertainty without detracting from the
ability of converging to the same optimum. In case of an
imperfect model with conflicting data streams, however, the
optimum solution is sensitive to the weighting as shown in
the following section.

3.2 Why to Weight - Balancing Model Uncertainty

The main objective for weighting is to balance the allocation
of model uncertainty across data streams. The model-data
mismatch caused by structural uncertainty of model is addi-
tional to measurement uncertainty and can show up in differ-
ent data streams depending on parameter values.

Consider that all observations are independent and refer to
the same time. Then we can use the mean and standard error
of the mean instead of the original observations in the cost
function. Hence, the variance decreases by the factor of the
number of records as

oi=
1

n

∑
i

oi (6a)

σ2(oi)=
1

n2

∑
i

σ2
i =

1

n
σ2
i (6b)

The uncertainty is smaller with larger number of observa-
tion records. Unfortunately, in an unweighted inversion, also
the model structural uncertainty is smaller for a data stream
with more records. Therefore, the model parameters will be
derived in a way that minimizes the mismatch with the richest

data, resulting in an allocation of the structural model-data
mismatch to sparse data streams. Only a small part of model
uncertainty will be allocated to parameters of processes that
are constrained by rich data streams, but a large part will be
allocated to parameters of processes that are constrained by
sparse data streams only. The actual model structural errors,
however, are obviously not distributed according to richness
of data streams. Eventually, with unweighted scenarios, the
model error or bias in well-constrained processes gets trans-
ferred to bias in model parameters of less constrained pro-
cesses. This effect is demonstrated in section 3.4.

To balance model uncertainty across data streams, it is
necessary to counteract the scaling of variance with the num-
ber of records (eq. 6b). This can be achieved by multiplying
the variance by the number of records of the respective data
stream, i.e., specifying weights wk = 1/nk in equation 4a
(see section 3.1). This, ultimately, corroborates the practice
of weighting of different data streams.

Thus, in calibration studies with multiple imbalanced data
streams, there is an inevitable trade-off between good es-
timates of posterior uncertainty (without weighting) ver-
sus balancing the structural model error (with weighting).
Hence, we suggest not to use the weighting approach if
model uncertainty is small compared to measurement uncer-
tainty, and to use the weights 1/nk if model uncertainty is of
concern.

Are there better methods to deal with this conflicting situ-
ation? In the following section, we propose an approach to
address this question.
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3.3 The parameter block Approach

One approach to prevent the transfer of model uncertainty to
parameters of less constrained processes is to optimize differ-
ent subsets of parameters against different data streams. For
example, optimizing parameters of photosynthesis and res-
piration against rich NEE and respiration data streams, but
optimizing parameters of slow allocation processes against
sparse data streams of litterfall measurements, and changes
in wood and soil carbon stocks. The parameter vector is di-
vided into two or more blocks, i.e., subsets, and each block
is inverted against a different cost function (eq. 7) as

θ=(θrich,θsparse) (7a)
π(θrich|θsparse)= f (Srich(θ),Ssparse(θ)) (7b)
π(θsparse|θrich)= f (Ssparse(θ)), (7c)

where equation (7a) depicts the division of the parameter
vector into two blocks. Note that the parameters in block
θsparse in equation (7c) are not constrained by the rich data
stream in order to prevent the transfer of bias. For the param-
eters constrained by the rich data (7b), the sparse data can be
included. With independent Gaussian distribution of obser-
vations, function f in equation (7) is defined (according to
eqs. 1a and 2a) as follows:

f(S1,...Sl)=K exp

[
−1

2

( ∑
k=1...l

Sk(θ)+Sprior(θ)

)]
(8)

It is possible to carry out the inversions of the blocks sep-
arately (e.g. Peylin et al., 2013). First, a full inversion of one
parameter block against the rich data streams is performed,
while keeping other parameters fixed. Next follows an in-
version of the other parameter block against the other data
streams. After the second inversion, however, the posterior
of the first parameter block might have changed due to the
change in values of parameters in the second block. The pro-
cedure, therefore, needs to be iterative. Despite the iteration,
uncertainty due to correlations between parameters in differ-
ent blocks might be neglected.

In this study, we use a Block-at-a-Time Metropolis Hast-
ings Algorithm with Monte Carlo sampling. Chib and
Greenberg (1995) show the feasibility of drawing in succes-
sion from each of the conditional densities and associated
cost functions. Before doing the Metropolis step, the log-
likelihood of the current state in parameter space should be
recalculated if other parameter values have changed. There-
fore, in each step of the Monte Carlo walk, a block can be
updated based on one cost function, followed by an update
of another block based on a different cost function (Fig. 2).

The correlations between the parameters in different
blocks are also captured because all blocks are updated in ev-
ery step, and a change in one block immediately influences
the successive updates of other blocks.

repeat
for each parameter block i do

if θdi changed since last update of block i then
recalculate current posterior density πi(θi|θdi)

end if
propose new θ̂i and calculate π̂i(θ̂i|θdi)
if π̂i/πi>runif then

set θi = θ̂i and πi = π̂i

end if
end for
record current state θ=

⋃
θi

until converged to limiting distribution

Fig. 2: Essential loop of the Block-at-a-Time Metropolis Al-
gorithm. θdi comprises all parameters from other parameter
blocks that the calculation of the posterior density πi(θi|θdi)
depends on. Parameters in θdi may have been updated in
other blocks. runif is a random number from a uniform
distribution between 0 and 1, corresponding to the standard
MCMC update rule (Metropolis et al., 1953; Chib and Green-
berg, 1995).

By specifying a different cost function for a parameter
block that does not depend on the rich data streams, the
transfer of model uncertainty to these parameters can be pre-
vented. However, the information of the rich streams for the
given parameter block is not used, and, hence, the posterior
uncertainty may be larger compared to the case when infor-
mation of all data stream is used for all parameters. The pa-
rameter block approach is therefore applicable when certain
processes and the associated parameters are related to obser-
vations from particular data streams.

3.4 Comparison: Artificial Model

First, the effects of different specifications of cost functions
on posterior parameters and predictions are compared by us-
ing a simple instructive example. We modeled the observa-
tions of two data streams yrich (nrich = 1000) and ysparse

(nsparse = 10), with observed covariates xrich and xsparse,
respectively, (eq. 9) using the parameters θ=(a,b,c) as

ŷi,rich(a,b,c)= ax1,sparse+b(xi,rich−c) (9a)
ŷi,sparse(a,b)= axi,sparse+bxrich/10 (9b)

Note that the prediction in the sparse data stream, ysparse,
mainly depends on covariates, xsparse, of sparse data stream
and only uses a single aggregated value, xrich, of the covari-
ates of the rich data stream. The rich data stream, for in-
stance, may represent a short-term measurement series of soil
respiration, and the sparse data stream may represent annual
measurements of export of dissolved organic carbon from
soil or any other less frequently measured inventory. The
covariates xrich can be daily temperature time series, while
the aggregated value xrich can be mean annual temperature.
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Table 2: Scenarios of model inversions.

Scenario Description

unweighted Unweighted sum of rich and sparse streams
estUnc Estimate residual uncertainty from fit
weighted Sum of rich and sparse streams weighted by 1/nk

blocked Sampling parameter blocks using Metropolis

The covariates xsparse may track slow changes in soil carbon
stocks, with x1,sparse being the specific value for the year
when the respiration time series is measured.

In order to demonstrate the transfer of model uncertainty,
a bias variable c is introduced. This variable may represent
a bias in measurement xrich or a conceptual difference be-
tween measurement and its meaning in the model.

True dependent variables y∗ were generated using model
(9) with parameters a= 1 and b= 2, and bias variable c=
0.3. The covariates xrich and xsparse were sampled from
uniform distributions as ∼ U(0.7,1) and ∼ U(0.5,1.5), re-
spectively. Next, artificial measurements, y, were generated
by adding Gaussian noise to y∗ with standard deviation of
6% and 2% of the mean of y∗

rich and y∗
sparse, respectively.

Using this artificial data, the posterior of parameters a
and b were sampled by different scenarios of model inver-
sions (Table 2), all using the same model that slightly dif-
fers from the data-generating model by using the fixed bias
variable c=0. A flat uniform unbounded prior, specifically
Sprior(a,b)= 0, was used. As the model error was introduced
in eq. 9a, a bias in predictions of ŷi,rich was expected.

The estUnc scenario tried to deal with the problem of
transfer of bias by estimating residual uncertainties, σRich
and σSparse that include the model structural error (eq. 2c)
from the model-data fits. Specifically, these two parameters
were treated in a separate parameter block and were sam-
pled each step from a conjugate Scaled-inverse-χ2 distribu-
tion with a zero prior (ν0 =0) (Gelman et al., 2003, p. 51).

With the blocked scenario, parameter a was updated based
on a cost function of only the sparse data stream (eq. 10c).
Similarly, parameter b was optimized based on a cost func-
tion of only the rich data stream (eq. 10d).

Ssparse(a,b)=
∑
i

(yi,sparse− ŷi,sparse(a,b,0))2

σ2
i,sparse

(10a)

Srich(a,b)=
∑
i

(yi,rich− ŷi,rich(a,b))2

σ2
i,rich

(10b)

πsparse(a|b)= f (Ssparse(a,b)) (10c)
πrich(b|a)= f (Srich(a,b)), (10d)

with f defined in eq. 8 and the hats denoting model predic-
tions (eq. 9).

By sampling the predictive posterior, i.e., forward simu-
lations using samples of the parameter posterior, the median
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Fig. 3: Scatterplot of median of predictions against true val-
ues for the artificial case. The black line denotes the 1:1
correspondence. Symbols represent different inversion sce-
narios (Table 2). Note that without weighting or parameter
blocks the prescribed model structural error in calculation of
yrich got transferred to ysparse.

model response and the 95% model prediction interval were
inferred.

Fig. 3 displays the scatterplots of median predictive pos-
terior against true values. Ideally, the mismatch between
model and data should manifest in the predictions in rich
data stream yrich due to introduction of model error in eq.
9a. In the estUnc scenario, the introduced model error was
compensated by a worse fit in the sparse data stream, i.e., the
model error was transferred to the sparse data stream. Fitting
against both rich and sparse data streams using unweighted
observation uncertainties (unweighted scenario in Fig. 3)
still shows the error in sparse data stream. This suggests that
the second data stream did not prevent the transfer of model
error from rich data stream. Hence, results falsely identified
that model errors are related with the processes constrained
by sparse data stream ysparse (eq. 9). Only after weight-
ing the data streams or using parameter blocks, the model
error was correctly allocated to rich data stream yrich. With
the weighted approach, however, the parameter uncertainties
were larger (Fig. B-1).

3.5 Comparison: DALEC Model With Artificial Data

Inversions of the DALEC model parameters (Section 2.2)
were tested using artificial data. Two rich data streams (NEE
and soil respiration) with 2000 observations, and a sparse
data stream (litterfall) with 10 observations were generated
by adding Gaussian noise to model predictions using pre-
scribed parameter values.

In the parameter blocks scenario, three parameters related
to allocation (Fnf,Fll,Cfmax) out of 15 optimized parame-
ters (Table 1), were optimized using a cost function that only
considered the misfit to sparse litterfall data stream but did
not consider the rich NEE and soil respiration data streams
(eq. 11c).
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θsparse =(Fnf,Fll,Cfmax) (11a)
π(θrich|θsparse)= f(SNEE,SSRespSLitterfall) (11b)
π(θsparse|θrich)= f(SLitterfall), (11c)

with f defined by eq. 8.
In addition to the model-data misfit and prior knowledge

on model parameters (Table 1), prior knowledge about the
development of the labile pool (Appendix A) was included.

First it was checked, whether the different inversion set-
tings (Table 2) could recover the prescribed true parame-
ter set. When the original data-generating DALEC model
was used, the posterior distributions were correctly centered
around the true prescribed parameters.

Next, an artificial model error was introduced to the calcu-
lation of gross primary production (GPP) in DALEC. Specif-
ically, the leaf mass per area (LMA) value, that is used to
translate leaf area index to leaf biomass, was changed from
100 to 20 (gCm-2).

During the inversion of the biased model, posterior den-
sity of the parameters differed between different inversion
scenarios (Fig. 4, Table B-1, and Fig. B-2). With the un-
weighted cost function, parameters related to temperature,
such as Et and Lfall, were constrained very well, whereas
parameters related to allocation, such as Fll, had a large bias.
However, with the explicit introduction of error in GPP cal-
culation, the errors were expected to be more related to fast
NEE-related process. In the weighted approach, confidence
ranges were large and mostly encompass the true parame-
ter value. The parameter block approach achieved a balance
between the two scenarios. Temperature related parameters
(Et and Lfall) were constrained near their true values, while
ranges of most other parameters encompassed the true pa-
rameter values. In all of the inversion scenarios, there was a
bias in parameter Flr, the fraction of labile transfers respired
to make up for the introduced error in GPP calculation.

The consequences of different parameter estimates can be
better seen in the predictive posterior, i.e., model predictions
using estimated parameter values (Fig. 5). With the un-
weighted cost function, the use of rich data streams of NEE
and soil respiration results in a good fit despite the introduc-
tion of error in the model. The litterfall data, however, did
not fit well even though it was a part of inversion. Bias has
been transferred to the sparse data stream. The weighted and
parameter block approaches both achieved a better balance
of the misfit between these imbalanced data streams.

3.6 Comparison: Real World Ecosystem Case

The DALEC model has been inverted using different sce-
narios (Table 2) against real observation data. The DALEC
model and the 10 year observation data at the Howland forest
are described in (section 2.2). The setup of the cost function
and the inversion was identical to the experiments described
in section 3.5 with the nonbiased model.

Cfmax Clab0 Et

Fg Fll Flr

Fnf Fnrr Lfall

Lout Pr pRaBelow

Tf Tl Tlab
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Fig. 4: Posterior density statistics of inverting the biased
DALEC model against artificial data. Parameters have been
normalized by their true values: p/ptrue. Bars represent the
95% confidence range and solid lines the best estimate. The
dashed line helps to see if the range encompasses the true
value at 1. Columns represent different scenarios of model
inversion (unweighted, blocked, and weighted as described
in Table 2).

There was a conflict between the NEE and litterfall data
given the DALEC model structure (Fig. 6). When the model
uncertainties were not balanced (unweighted scenario), a
high confidence in predictions of NEE and soil respiration
was achieved only at a cost of a clear bias in predictions
of leaf litterfall. Seven out of 10 litterfall observations
were outside the confidence interval of model predictions.
Weighting the data streams by the number of records substan-
tially increased the uncertainty in model predictions, whereas
the marginal parameter posterior distributions were not con-
strained much compared to the prior distributions (Table B-2
and Fig. B-3). The parameter block approach achieved a bal-
ance between the two cases. The bias in litterfall predictions
decreased, and the uncertainty in predictions of NEE and soil
respiration was moderate.

To study the consequences of differences in posterior pa-
rameters, the model was run for a 40 year period into the fu-
ture using a repeated time series of forcing data (Figure 7). In
the unweighted scenario, the predictions of the range of NEE,



T. Wutzler and N. Carvalhais: Imbalanced Data - Weighting vs Parameter Block Approach 9

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooo
ooooo

ooooo

oo
o
o
o
o

o

o

o
oo

ooo
o
o

oo

o

oo
o
o
oo
o
ooo
o
ooo
o
o

ooo

oo

o

o

o

o

o

o

oo

o

o

o

oo
o

oo

o

o
o

o

ooo
oooooo
o
oooooooooooooooooooooooooooooo

−6

−3

0

N
E

E
 (

gC
/m

2/
da

y)

oo
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooo
oo
o
o
oo
ooooo
o
o
o

o
oo
o

oo

o

oo

o

o

o
ooo

o
o
oo

o

o
o
oo

oo
o
o
ooo

oo

o
o

o

o

o

oo

o

o
o

o
o

o
o
o

o

o
o

o

o

o
oo

o

o

o
o

oo
ooo
oo
o

ooo
o

ooo
o
ooo
ooo
o

oo
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo0

2

4

6

so
il 

re
sp

ira
tio

n 
(g

C
/m

2/
da

y)

o o
o

o
o o o

o

o

o

20

40

60

80

unweighted

lit
te

rf
al

l (
gC

/m
2/

yr
)

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooo
ooooo

ooooo

oo
o
o
o
o

o

o

o
oo

ooo
o
o

oo

o

oo
o
o
oo
o
ooo
o
ooo
o
o

ooo

oo

o

o

o

o

o

o

oo

o

o

o

oo
o

oo

o

o
o

o

ooo
oooooo

o
oooooooooooooooooooooooooooooo

oo
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooo
oo
o
o
oo
ooooo
o
o
o

o
oo
o

oo

o

oo

o

o

o
ooo

o
o
oo

o

o
o
oo

oo
o
o
ooo

oo

o
o

o

o

o

oo

o

o
o

o
o

o
o
o

o

o
o

o

o

o
oo

o

o

o
o

oo
ooo
oo
o

ooo
o

ooo
o
ooo
ooo
o

oo
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

o o
o

o
o o o

o

o

o

blocked

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooo
ooooo

ooooo

oo
o
o
o
o

o

o

o
oo

ooo
o
o

oo

o

oo
o
o
oo
o
ooo
o
ooo
o
o

ooo

oo

o

o

o

o

o

o

oo

o

o

o

oo
o

oo

o

o
o

o

ooo
oooooo

o
oooooooooooooooooooooooooooooo

oo
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooo
oo
o
o
oo
ooooo
o
o
o

o
oo
o

oo

o

oo

o

o

o
ooo

o
o
oo

o

o
o
oo

oo
o
o
ooo

oo

o
o

o

o

o

oo

o

o
o

o
o

o
o
o

o

o
o

o

o

o
oo

o

o

o
o

oo
ooo
oo
o

ooo
o

ooo
o
ooo
ooo
o

oo
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

o o
o

o
o o o

o

o

o

weighted

Fig. 5: Predictive posterior of inverting the biased DALEC
model with artificial data over time. NEE and soil respira-
tion are displayed against days of the tenth year and litterfall
against the 10 years. Open dots and grey bars represent ob-
servations and their 95% confidence interval. The black lines
and the blue bands represent the median and 95% confidence
interval of population model predictions. Columns represent
different scenarios of model inversion (Table 2).

respiration, and leaf litterfall decreased with time. In the
weighted scenario, the uncertainty bounds of the model pre-
dictions were quite large, allowing for a wide range of pos-
sible ecosystem responses. Finally, in the parameter block
scenario, an intermediate response was predicted. The range
of NEE was at the lower limits of the predictions in the
weighted scenario.

This demonstrates how large imbalance of data streams
forces the model to fit the richest NEE data and allocates mis-
matches to other processes. The high resolution of the time
series might convey information about site and event-specific
details of the processes that were neither intended to be mod-
eled exactly, nor likely to occur in the same way across dif-
ferent sites and times. Hence, there is a good chance that the
model parameters are overfitted to the NEE data (Ginzburg
and Jensen, 2004).

Another important finding of this example was, that sig-
nificant differences in multidimensional parameter space are
hard to detect by visualizing the parameter distribution alone.
The differences were much clearer when the predictions of
different parameter sets in a realm outside the calibration pe-
riod were evaluated.

It is unclear why the DALEC model was not able to match
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Fig. 6: Predictive posterior of inverting the DALEC model
with data from Howland forest using alternative inversion
scenarios (Table 2), similar to Figure 5.
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Fig. 7: Predictive posterior of inverting the DALEC model
with data at the Howland forest. Similar to figure 6, but
showing future prediction for year 40 instead of year 10 and
litterfall for 40 years. Note that many of the uncertainties
with the weighted scenarios are larger than the range of y
axis.
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all the observations. Although a detailed analysis is beyond
the scope of this study, there are a few hints. Model param-
eters were inverted such that there were a few years where
the carbon investments into leaves were not fully compen-
sated by carbon fixation. Consequently, this led to a modeled
depletion of the labile pool and the inability to simulate ap-
propriate new leaf growth in spring. Such mismatch could
emerge from a systematic overestimation of measured litter-
fall.

The parameter block approach is applicable in situations
when certain processes, and their associated parameters, can
be related to corresponding observations. When the relation-
ship between parameters and observations is not clear, then
choice of the parameter blocks versus the cost functions may,
however, introduce some subjectivity. Thus, the resulting
posterior parameter distribution may not be directly compa-
rable to other studies. However, the strength of the parameter
block approach is the ability to explore the source of struc-
tural uncertainties of models while still propagating uncer-
tainty from observations to parameters and at the same time
counteracting the transfer of model uncertainty to parameters
of processes constrained by sparse data streams.

4 Conclusions

The effects of different treatments of multiple imbalanced
data streams have been studied with several examples of in-
creasing complexity. The findings are common across all
examples. Effects of model structural uncertainty are allo-
cated to different processes depending on the size of the data
streams. In the unweighted approach, or when uncertain-
ties are estimated from fits, parameters are optimized such
that the rich data streams fit well and additional sparse data
streams have only a very small influence. Bias due to model
structural error is transferred to the parameters of processes
constrained by observation with sparse data only.

In the biased version of the DALEC model, unweighted
inversion against artificial observations did not result in the
expected bias in parameters of strongly constrained fast pro-
cesses, such as NEE, to which the artificial bias was intro-
duced. Instead, bias was transferred to parameters of less
constrained slow processes, such as litterfall.

The transfer of model structural uncertainty has large con-
sequences in model predictions and identification of model
process that requires improvements. In future, with the avail-
ability of high-frequency ecosystem measurements and a ne-
cessity of abstractions in model development, the issue can
be expected to be discussed more often.

Therefore, it is important to heed the following conclu-
sions.

1. Model inversion against imbalanced data streams leads
to allocation or transfer of model structural uncertainty
from parameters of more constrained processes to pa-
rameters of less constrained processes.

2. Weighting the data streams by number of observations
allocates model uncertainty equally across processes
constrained by different data streams. When only model
uncertainty is of concern, weighting by the number of
observation records is reasonable even though it may
strongly inflate the posterior uncertainties.

3. With both weighting and parameter block approaches,
the best estimate of parameters is expected to be closer
to true values than that with the unweighted approach.
With weighting though, the posterior depends more
strongly on the choice of informative priors. The param-
eter block approach can constrain the posterior density
better than the weighting approach.

We present a new ’parameter block’ approach as an al-
ternative way to address the issues with the use of imbal-
anced data streams in model-data integration. Specifically,
optimization of different parameter subsets against different
data streams helps to counteract the problem of transfer of
model uncertainty.
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Appendix A Prior Knowledge on Changes of the Labile
Pool

The predictions based on inversions with or without prior of
the labile pool matched the observations for the calibration
period almost equally well. However, in future predictions
without prior of the labile pool, the systems’ ability to pro-
duce enough new leaves in spring diminished after about 30
years, which lead to a strong net carbon source despite iden-
tical forcing.

An examination of the dynamics revealed that a discrep-
ancy between NEE and litterfall data streams was resolved
by a consistent depletion of the labile pool over the years.
Even though the effects were negligible during the observa-
tion period, they became larger after a sufficient depletion of
labile pool after about 20 years. This was a clear case of a
good fit for wrong reasons.

Hence, the knowledge (that labile pool should not consis-
tently change over the observation period) was included by
penalty in the cost function. In the following, the details of
this penalty component in cost function are explained.

First, the consistent change of labile pool over the 10 year
observation period was calculated by a regression of pool
size at yearday 365 against year. Next, the slope was nor-
malized by the mean and maximum allowed change of pool
size.

sr = abs

(
s

cmeanclimit

)
, (A1)

where s is the regression slope, cmean is the mean of labile
pool across the observation period, and climit is a prescribed
maximum relative change (a value of 0.8% was used). At
these prescribed maximum change limits (sr = 1), the cost
penalty, SδCLab, was set to twice the expected misfit, i.e.,
number of records in the richest data stream, pδCLab (eq.
A2). Within the limits (sr < 1), a function that is steep at
the edges but very flat inside was used. Outside the limits
(sr > 1), a slowly increasing function was used to help the
inversion to find the near zero slope range (Fig. A1).

SδCLab = pδCLab

{
s10r for sr < 1

1+log(sr) else
(A2)

In a previous attempt, we tried to reject all parameter vec-
tors that yielded larger slopes However, this was not found to
be effective because it rejected large regions in the parameter
space hampering the burnin of the inversion.

The cost SδCLab was added to the cost of model-data misfit
(eq. 8). This penalty helped the inversion to converge to
an optimum, in which the labile pool was not consistently
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Fig. A1: Cost for consistent relative change of labile pool sr
during observation period. The cost at abs(sr)= 1, i.e., at the
limits of allowed change, corresponds to twice the expected
misfit with the best parameter estimate.

depleted. For the best parameters, the cost of this penalty
was an order of magnitude smaller that the cost of model-
data misfit and hence did not distort the posterior parameter
probabilities.
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Appendix B Supplement Figures and Tables

More detailed and complex figures and tables are presented here. They are a bit harder to read than the figures in the text, but
help those readers who are interested in comparing the presented results to other studies. Figure B-1 presents the posterior
parameters in addition to posterior predictions of Figure 3. Figure B-2 and table B-1 detail the non-normalized parameter
distributions in addition to Figure 4 for the DALEC example with artificial data. Figure B-3 and table B-2 do so for the
DALEC example with observation data from Howland forest.

Fig. B-1: Violin plots (probability density versus parameter value) of posterior densities of the artificial example using the
model with error in calculation of the observations in the rich data stream. The black dashed vertical lines denote the true
values. In addition to scenarios in table 2, a fit to the rich data stream only and a Gibbs sampling (Gelman et al., 2003)
(blocked G scenario) are included. The latter sampled parameters in each step directly from PDFs given the data instead of
using a MCMC update. This was possible because of the simple model structure. It yields almost the same results as the
parameter-blocks approach (blocked scenario) and, hence, further validates the parameter-blocks approach.
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Fig. B-2: Posterior densities of inverting the biased DALEC model against artificial data. Black vertical lines represent the true
prescribed parameter values. The colored vertical lines represent the maximum likelihood estimate for the respective inversion
scenario. Note that although the model bias was introduced into the GPP calculation, the parameters of these fast processes,
such as Et are not biased but the bias shows up in slow process parameters such as Clab0 or Fll with the unweighted scenario.
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Table B-1: Posterior parameter statistics of the biased DALEC model inverted against artificial observations. Turnover rates
(Tf, Tl,Tlab) are log-transformed. MLE represent the parameter vector with maximum likelihood. In the case of the parameter-
block approach, this is the vector with the highest minimum rank across likelihoods of the different blocks.

unweighted blocked weighted
true MLE median 2.5% 97.5% MLE median 2.5% 97.5% MLE median 2.5% 97.5%

Fg 0.68 0.75 0.75 0.72 0.77 0.79 0.79 0.73 0.84 0.78 0.74 0.62 0.84
Fnf 0.74 0.60 0.61 0.57 0.65 0.79 0.79 0.67 0.89 0.69 0.68 0.53 0.84
Fnrr 0.36 0.26 0.27 0.12 0.44 0.23 0.30 0.13 0.47 0.26 0.30 0.13 0.46
Tf -2.73 -2.41 -2.40 -2.45 -2.35 -2.35 -2.30 -2.69 -1.97 -2.62 -2.41 -3.26 -1.71
Tl -10.40 -9.62 -9.67 -9.93 -9.45 -9.66 -9.59 -11.57 -8.76 -9.97 -9.67 -12.92 -6.74
Et 0.10 0.09 0.09 0.09 0.10 0.09 0.08 0.05 0.10 0.06 0.07 0.02 0.11
Pr 9.99 7.35 6.89 5.71 8.29 6.14 6.76 5.06 11.25 9.32 8.92 5.55 12.60

Lout 206.53 207.24 206.09 201.94 217.57 204.87 206.05 166.94 239.79 202.86 203.53 163.25 241.86
Lfall 14.35 14.31 14.33 14.30 14.37 14.35 14.68 14.26 15.99 16.61 16.33 13.68 19.30
Fll 0.30 0.50 0.50 0.48 0.50 0.48 0.43 0.32 0.50 0.38 0.36 0.23 0.48

Tlab -5.02 -4.61 -4.73 -4.99 -4.48 -6.07 -6.01 -6.69 -5.10 -5.86 -5.79 -6.81 -4.62
Flr 0.10 0.28 0.27 0.23 0.30 0.19 0.22 0.14 0.32 0.26 0.30 0.13 0.45

Cfmax 342.59 271.18 297.65 139.26 460.76 311.48 308.29 155.71 474.51 297.00 295.35 153.53 459.05
pRaBelow 0.27 0.21 0.21 0.19 0.24 0.18 0.19 0.13 0.27 0.26 0.25 0.12 0.42

Clab0 326.84 73.17 83.03 69.74 101.11 276.53 309.64 155.09 475.41 290.42 312.97 144.09 464.84
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Fig. B-3: Posterior densities of inverting the DALEC model using Howland observational data.
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Table B-2: Posterior parameter statistics of the DALEC model inverted against observations at Howland forest. Same as table
B-1, unless the true value is not known.

unweighted blocked weighted
MLE median 2.5% 97.5% MLE median 2.5% 97.5% MLE median 2.5% 97.5%

Fg 0.70 0.71 0.67 0.74 0.72 0.73 0.64 0.80 0.59 0.60 0.46 0.76
Fnf 0.90 0.89 0.84 0.90 0.84 0.87 0.78 0.90 0.77 0.74 0.60 0.88
Fnrr 0.27 0.30 0.13 0.47 0.25 0.29 0.12 0.47 0.31 0.29 0.14 0.46
Tf -2.24 -2.27 -2.32 -2.22 -2.32 -2.12 -2.42 -1.79 -2.71 -2.87 -4.03 -1.80
Tl -10.98 -11.13 -12.06 -10.59 -12.95 -10.67 -13.37 -9.41 -9.73 -10.34 -13.22 -7.43
Et 0.07 0.08 0.07 0.08 0.08 0.07 0.05 0.09 0.09 0.10 0.06 0.13
Pr 8.86 9.25 7.88 10.88 10.54 9.57 6.14 13.51 8.85 10.13 6.24 13.92

Lout 211.62 210.59 208.70 213.90 214.16 212.21 176.79 240.30 206.42 203.39 166.33 239.61
Lfall 12.49 12.49 12.48 12.50 12.51 12.53 12.26 13.06 14.49 15.67 12.52 19.26
Fll 0.27 0.27 0.24 0.30 0.30 0.23 0.15 0.32 0.33 0.32 0.20 0.45

Tlab -4.09 -4.11 -4.30 -3.91 -4.34 -4.82 -5.55 -4.02 -4.99 -4.68 -5.92 -3.14
Flr 0.12 0.12 0.10 0.13 0.10 0.09 0.06 0.13 0.13 0.13 0.04 0.22

Cfmax 314.04 322.98 222.25 469.65 333.69 348.85 242.19 482.79 282.58 293.49 191.10 408.44
pRaBelow 0.38 0.36 0.30 0.43 0.30 0.30 0.21 0.44 0.28 0.29 0.14 0.45

Clab0 180.75 178.05 151.00 211.23 200.31 321.19 187.13 476.17 282.32 275.25 159.91 409.99


