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Abstract. In order to understand the coupling of carbon (C)
and nitrogen (N) cycles, it is necessary to understand C and
N-use efficiencies of microbial soil organic matter (SOM)
decomposition. While important controls of those efficien-
cies by microbial community adaptations have been shown
at the scale of a soil pore, an abstract simplified representa-
tion of community adaptations is needed at ecosystem scale.

Therefore we developed the soil enzyme allocation model
(SEAM), which takes a holistic, partly optimality based ap-
proach to describe C and N dynamics at the spatial scale
of an ecosystem and time-scales of years and longer. We
explicitly modelled community adaptation strategies of re-
source allocation to extracellular enzymes and enzyme limi-
tations on SOM decomposition. Using SEAM, we explored
whether alternative strategy-hypotheses can have strong ef-
fects on SOM and inorganic N cycling.

Results from prototypical simulations and a calibration
to observations of an intensive pasture site showed that
the so-called revenue enzyme allocation strategy was most
viable. This strategy accounts for microbial adaptations
to both, stoichiometry and amount of different SOM re-
sources, and supported the largest microbial biomass under
a wide range of conditions. Predictions of the holistic SEAM
model were qualitatively similar to precitions of the SYM-
PHONY model, which explicitly represents competing mi-
crobial guilds. With adaptive enzyme allocation under con-
ditions of high C/N ratio of litter inputs, N that was formerly
locked in slowly degrading SOM pools was made accessible,
whereas with high N inputs, N was sequestered in SOM and
protected from leaching.

The findings imply that it is important for ecosystem scale
models to account for adaptation of C and N use efficiencies
in order to represent C-N couplings. The combination of sto-

ichiometry and optimality principles is a promising route to
yield simple formulations of such adaptations at community
level suitable for incorporation into land surface models.

1 Introduction

The global element cycles of carbon (C) and nitrogen (N) are
strongly linked and cannot be understood without their intri-
cate interactions (Thornton et al., 2007; Janssens et al., 2010;
Zaehle and Dalmonech, 2011). The ties between nutrient cy-
cles are especially strong in the dynamics of soil organic mat-
ter (SOM), because the depolymerisation and mineralisation
of SOM relies on a microbial decomposer community with
a rather strict homeostatic regulation of their stoichiometry,
i.e. their elemental ratio of C/N (Sterner and Elser, 2002;
Zechmeister-Boltenstern et al., 2015). Therefore, it is impor-
tant to represent effects of microbial control on soil biogeo-
chemistry also in ecosystem to global scale models (Todd-
Brown et al., 2012; Xu et al., 2014).

C and N fluxes controlled by microbial stoichiometry com-
prise respiration of organic C, mineralization of organic N,
and immobilization of inorganic N. They occur if decom-
posers experience stoichiometric imbalance, i.e. differences
in elemental composition between food and the requirement
of feeders (Sterner and Elser, 2002). Decomposers require
a certain amount of C for each unit of N. With balanced
growth, i.e. when stoichiometry of the food matches the re-
quirements, decomposers can utilize all food for produc-
tive purposes such as synthesis of new biomass or enzymes,
growth respiration, and maintenance respiration. If there is
different amount of C per unit N in the food, decomposers
have to deal with this imbalance in some way.
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Decomposers can - in principle - adjust in three differ-
ent ways when faced with imbalances between the stoi-
chiometry of the organic material (OM), i.e. the litter and
SOM they feed on, and their own stoichiometric require-
ments (Mooshammer et al., 2014b). First, individual mi-
crobes can adapt their carbon-use efficiency (CUE), or their
nutrient-use efficiency (Sinsabaugh et al., 2013). The alter-
ation of CUE has shown to have large consequences on
prediction of carbon sequestration in SOM (Allison, 2014;
Wieder et al., 2013). Regulation of nutrient use efficiency
has consequences for nutrient recycling and loss of nutri-
ents from the ecosystem (Mooshammer et al., 2014a) and soil
plant feedback (Rastetter, 2011). Second, decomposer com-
munities can adapt their stoichiometric requirements. Com-
munity composition can shift between species with high C/N
ratio, such as many fungi, or species with lower C/N ra-
tio, such as many bacteria (Cleveland and Liptzin, 2007;
Xu et al., 2013), although the flexibility is relatively narrow.
Third, decomposers can adapt their allocation of resources
into synthesis of different extracellular enzymes to prefer-
entially degrade fractions of SOM that differ by their stoi-
chiometry (Moorhead et al., 2012).

Representation and consequences of stoichiometry on ele-
ment cycling differ between models at different scales. Most
models at ecosystem scale employ the first decomposer im-
balance option, and use changes in CUE or nutrient use ef-
ficiency to represent stoichiometric controls on respiration
and mineralization fluxes (Manzoni et al., 2008). However,
modelling studies at the pore scale have demonstrated the
important effect of community adaptation and their emerg-
ing effects on element cycling (Allison and Vitousek, 2005;
Resat et al., 2011; Wang et al., 2013). Explicit representation
of competition among several microbial groups that differ in
their expression of different enzymes resulted in a compara-
ble simulated CUE across a wide range of litter stoichiome-
try (Kaiser et al., 2014). Likely, therefore, there is a need to
capture the effects of community adaptation also in models
at ecosystem scale.

At least two alternatives exist to represent the effects of
microbial diversity at the ecosystem scale. First, competition
of several microbial populations can be explicitly modelled
to represent stoichiometric effects such as sustained seques-
tration of N with high N inputs (Perveen et al., 2014). Sec-
ond, adaptation of effective properties of the entire microbial
community, such as investments into nutrient uptake (Rastet-
ter et al., 1997; Rastetter, 2011) can represent the emerging
effects in an abstract, but dynamic and adaptive way. The
adaptation of enzyme allocation was recently formalised us-
ing the second imbalance strategy by the conceptual EEZY
model (Moorhead et al., 2012) and further developed us-
ing the EnzMax allocation strategy by Averill (2014). While
these models show strong strategy effects on nutrient cycling
at a time scale of days to months, they do not represent feed-
back mechanisms to the size and stoichiometry of the SOM

pools, and therefore they cannot study the consequences for
decadal SOM dynamics.

In this paper, we adopt the second alternative of represent-
ing microbial diversity as working hypothesis and propose a
holistic scheme to represent effects of microbial adaptation
of enzyme synthesis on SOM cycle at the ecosystem scale.
Our aim was to tackle the need of capturing the decadal time
scale effects of adaptive enzyme synthesis on SOM dynam-
ics and nutrient recycling. We therefore extended the EEZY
model to explore different consequences of alternative en-
zyme allocation strategies.

This paper first introduces the SEAM model (Section 2.1),
a dynamical model of SOM cycling that explicitly repre-
sents microbial strategies of producing several extracellular
enzyme pools (Section 2.3). Next, the effects of those strate-
gies on SOM cycling are presented by prototypical examples
(Sections 2.4 and 3.1). Finally, a calibration to an intensive
pasture site (Section 2.5) demonstrates the usability of the
model (Section 3.2) and compares its predictions to the ones
of the SYMPHONY model (Perveen et al., 2014), which ex-
plicitly models several microbial-groups.

2 Methods

2.1 Soil Enzyme Allocation Model (SEAM)

The dynamic Soil Enzyme Allocation Model (SEAM) al-
lows exploring consequences of enzyme allocation strategies
for SOM cycling at the soil core to ecosystem scale from
monthly to decadal scale. The modelled system are C and
N pools in SOM in a volume of soil. The system could be
soil of a laboratory incubation or a layer of a soil profile, e.g.
its upper 20 cm. The model represents different SOM pools
containing C and N as state variables and specifies differen-
tial equations for the mass fluxes. It is driven by C and N in-
puts of plant litter (both above-ground and rhizodeposition),
inorganic N inputs from deposition and fertilisers, as well as
prescribed uptake of inorganic N by roots. SEAM computes
output fluxes of heterotrophic respiration and leaching of in-
organic N.

Key features are: first, the representation of several SOM
pools that differ by their stoichiometry, and second, the rep-
resentation of enzymes that degrade specifically those SOM
pools. The quality spectrum is modelled by two classes: a C
rich litter pool, L, and a N rich pool that consists of microbial
residues, R (Fig. 1, Table 1). The most important assump-
tions are described in the following paragraphs, while the
symbols are explained in Tab. A1 and detailed model equa-
tions are provided with A.

Decomposition of the litter and residue pools follows re-
verse Michaelis-Menten kinetics (Schimel and Weintraub,
2003), which is first-order to the amount of OM, and satu-
rates with the amount of the respective enzyme. C/N ratios,
β, of the decomposition flux are equal to the C/N ratios of
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Table 1. State variables and model inputs with initial values and input fluxes. Values refer to the Laqueuille pasture calibration.

Symbol Definition Value Unit Rationale

L C in litter 571 g m−2 quasi steady state
LN N in litter 8.15 g m−2 (Perveen et al., 2014) (by their N/C ra-

tio β)
R C in residue substrate 10500 g m−2 (Allard et al., 2007) (total stocks - L -

dR)
RN N in residue substrate 968 g m−2 by C/N ratio in (Perveen et al., 2014)
EL C in enzymes targeting L 0.34 g m−2 quasi steady state
ER C in enzymes targeting R 0.20 g m−2 quasi steady state
B microbial biomass C 89.2 g m−2 quasi steady state
I inorganic N 2.09 g m−2 (Perveen et al., 2014)

inputL litter C input 969.16 g m−2yr−1 (Perveen et al., 2014) (mpC
obs
p )

iI inorganic N input 22.91 g m−2yr−1 (Perveen et al., 2014)
kIP inorganic plant N uptake 16.04 g m−2yr−1 (Perveen et al., 2014) (assuming plant

steady state: plant N export + litter N
input)

Figure 1. Model structure of SEAM: Two substrate pools (L and
R) which differ in their elemental ratios are depolymerized by re-
spective enzymes (EL and ER). The simple organic compounds
(DOM) are taken up by the microbial community and used for syn-
thesizing new biomass (B), new enzymes, or for catabolic respi-
ration. Turnover of microbial biomass (tvr) is in part mineralized
and the rests adds to the residue pool. Stoichiometric imbalance
between DOM and B causes overflow respiration or mineraliza-
tion/immobilization (ΦB) of inorganic N (I) (further detailed in Fig.
2). Boxes correspond to pools, disks to fluxes, black arrow heads to
mass fluxes, white arrow heads to other controls. Solid lines repre-
sent fluxes of both C and N, while dotted and dashed lines represent
separate C or N fluxes respectively.

the decomposed pool. The C/N ratios of biomass and en-
zymes are assumed to be fixed, while those of the substrate
pools may change over time due to changing C/N ratio of
total influxes to these pools. Imbalances in stoichiometry of

uptake and microbial requirements are compensated by over-
flow respiration or N mineralization. This means that if there
is more C in uptake than can be used based on other con-
straints, such as available N, it will be respired. If there is
more N in uptake than can be used by other constraints, such
as available C, it will be mineralized. Total enzyme alloca-
tion is a fixed fraction, aE , of the microbial biomass, B, per
time. However, the microbial community can use different
strategies to adjust their allocation to synthesis of alterna-
tive kinds of new enzymes (Section 2.3). All decomposition
fluxes first fuel a pool of dissolved OM (DOM). The dynam-
ics of this pool is usually much faster than the dynamics of
the other pools. Therefore, SEAM is simplified by assuming
the DOM pool to be in quasi steady state (Wutzler and Re-
ichstein, 2013). Hence, the sum of all influxes to the DOM
pool, i.e. decomposition plus part of the enzyme turnover, is
taken up by the microbial community and the DOM pool is
not simulated explicitely. If expenses for maintenance and
enzyme synthesis cannot be met, the microbial community
starves and declines in biomass.

2.2 Exchange with inorganic N pools

The imbalance flux, ΦB (A12c), lets microbes mineralise ex-
cess N, or immobilise required N up to a maximum rate,
uimm,Pot. The latter is assumed to increase linearly with the
inorganic N pool. While this stoichiometric imbalance flux is
the most widely implemented flux mechanism between mi-
crobial biomass and the inorganic N pools in SOM models
(Manzoni and Porporato, 2009), it is not sufficient to recy-
cle N to the inorganic pool if microbial biomass is itself N
limited. Therefore, two additional mineralisation fluxes are
implemented in SEAM (Fig. 2). First, a fraction of micro-
bial uptake N in DOM, Φu (termed uptake mineralisation),
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Figure 2. Total mineralization flux in SEAM sums three compo-
nents: Φ = Φu + ΦB + Φtvr. In addition to the maybe negative im-
balance flux, ΦB of microbial biomass, B, there are two additional
mineralization fluxes feeding the inorganic pool, I: first, mineraliza-
tion during uptake, Φu, and second, mineralization during microbial
turnover, Φtvr. The N dynamics depends also on fluxes across the
system boundary, namely input of organic N with litter, input of
inorganic N, iI , leaching, and plant uptake of inorganic N.

is mineralised to represent the subscale imbalance flux at C-
limited spots of a heterogeneous soil volume, which is in to-
tal not C-limited (Manzoni et al., 2008). Second, a fraction of
microbial turnover is mineralised that accounts for grazing.
Grazers respire a fraction of the grazed biomass C to meet
their energy demand, and - assuming invariant grazer stoi-
chiometry - must release an equivalent amount of nutrients.
This mineralization component, here termed turnover miner-
alization Φtvr, has been formalised in the soil microbial loop
hypothesis (Clarholm, 1985; Raynaud et al., 2006).

In the light of the introduction of these additional N min-
eralisation fluxes, we propose a refined term of N limita-
tion in modelling concepts (Table 2). When microbes can-
not meet their stoichiometric demand by DOM uptake but
can meet their demand by immobilising inorganic N, we sug-
gest the term organic N limitation. When the immobilisation
flux cannot meet the stoichiometric requirement of the mi-
crobial community, we suggest the term microbial N limi-
tation. Despite the maximum microbial immobilisation flux
there might still be a net mineralization in the system due
to uptake mineralization and turnover mineralization. When
there is a net N immobilizsation in the system, i.e. a net trans-
fer from the inorganic pool to the organic pools of SOM and
microbial biomass, we suggest the term decomposer system
N limitation. While the two first terms are relevant for micro-
bial ecology, the last term affects N availability for plants.

2.3 Enzyme allocation strategies

Microbes in SEAM allocate a proportion α of their total en-
zyme investments, aeB, to the synthesis of enzymes, synE ,
targeting the N-rich R substrate and a proportion 1−α to the
synthesis of enzymes targeting the N-poor, but better degrad-

Table 2. Increasing levels of N limitation

Term Definition
Organic N lim. N in microbial uptake of organic mat-

ter is less than constrained by other el-
ements (ΦB < 0).

Microbial N
lim.

uptake of organic matter plus maxi-
mum immobilisation flux is not enough
to satisfy microbial N requirements
(−ΦB ≥ uimm,Pot).

Decomposer
system N lim.

There is a net transfer from the in-
organic pool to the organic pools
(Φ = ΦB + Φu + Φtvr < 0).

Table 3. Microbial enzyme allocation strategies

Strategy Allocation is
Fixed independent, constant
Match adjusted to achieve balanced growth, i.e.

βDOM matches microbial demands
EnzMax equal to Match-Allocation if microbial N-

limited, and equal to α= 0.5 otherwise
Revenue proportional to return per investments into en-

zymes

able L substrate.

synER
/(synER

+synEL
)≡ α (1)

Four different strategies of allocating investments among
synthesis of alternative enzymes were explored in this study
(Table 3).

The Fixed strategy assumes that allocation is independent
of, and not changing with changes in substrate availability.

α= const.= 1/2 (2)

This strategy corresponds to the models without enzyme al-
location adaptation where decomposition rate is a function of
microbial biomass (Wutzler and Reichstein, 2008).

The Match strategy assumes that microbes regulate en-
zyme synthesis in a way that the decomposition products bal-
ance their stoichiometric demands (Moorhead et al., 2012).
The partitioning coefficient α is derived by equating the C/N
ratio of the sum of uptake fluxes after other expenses, such as
growth and maintenance respiration, to the C/N ratio of mi-
crobial biomass, βB (3). The equation of (Moorhead et al.,
2012) has been adapted to take into account inorganic N im-
mobilization and splitting their CUE into growth respiration
and an ”anabolic” microbial efficiency accounting for growth
respiration.

βB =
ε(decL+decR−rM )

decL /βL + decR /βR−ΦM
, (3)
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where decL, and decR are depolymerisation fluxes of the lit-
ter and residue pools, respectively (A4), which both are a
function of enzyme levels and, hence, indirectly a function
of α. rM is maintenance respiration (A2b), ε is the anabolic
microbial efficiency accounting for growth respiration (A7),
βi are C/N ratios of the respective pools i, and ΦM is the net
flux of N from living microbes to the mineral N pool. Equa-
tion 3 for simplicity neglects the small inputs of enzymes to
DOM. Here, we assume that microbes use the maximal im-
mobilisation of inorganic N, uimm,Pot (A9) to meet their sto-
ichiometric requirements with the Match strategy. Hence, the
net N imbalance flux is the difference between mineralization
during uptake and the immobilisation: ΦM = Φu−uimm,Pot.
With microbial N limitation, (3) has no solution. In this case,
the enzyme effort is allocated entirely to the N-rich substrate
(α= 1), and excess carbon uptake is respired by overflow
respiration.

If current enzyme pools ES , are assumed to be in quasi
steady-state with their respective substrate S ∈ {L,R} and
microbial biomass, then equation 3 can be solved for the par-
titioning coefficient, α.

αM = fαFix(L,βL,R,βR,EL,ER, rM ,ΦM ) (4a)

α=


0, ifαM ≤ 0

1, ifαM ≥ 1

αM , otherwise
(4b)

where the long equation (4a) is given with supplementary
material together with R-code and the SYMPY script of its
derivation. The bound to one is necessary to handle the case
of microbial N limitation. The bound to zero corresponds to
the theoretical case where the C-rich substrate may not suf-
fice to cover microbial C demands relative to N demands.

The EnzMax strategy (Averill, 2014) matches stoichiom-
etry if microbes are substrate N limited, and uses a fixed
allocation coefficient α= 0.5 if microbes are not substrate
N-limited, i.e. C-limited. In order to avoid freqent jumps be-
tween the two cases, a weighted mean between the two fluxes
was used for N imbalance fluxes near ΦB = 0 with α ap-
proaching the match solution (4a) for N mineralization or
approaching 0.5 for N immobilization indicating C limita-
tion.

The Revenue strategy assumes that the microbial commu-
nity adapts in a way to ensure that the investment into en-
zyme synthesis is proportional to its revenue, i.e. the return
per investment regarding the currently limiting element:

αC =
revRC

revLC +revRC
(5a)

αN =
revRN

revLN +revRN
, (5b)

where revS is the revenue from given substrate S ∈ {L,R}
with microbial C and N limitation respectively. The revenue

is computed on the current status quo, i.e. the current en-
zyme levels. B explains why investing proportional into all
enzymes is better than investing into the single best enzyme.
The return is the current decomposition flux from the sub-
strate degraded by the respective enzyme (A4), and the as-
sumed investment balances enzyme turnover to keep current
enzyme levels, E∗

S (A3).

revSC =
return

investment
=

decS,Pot
E∗

S

KM,S+E∗
S

kEE∗
S

=
decS,Pot

kE(KM,S +E∗
S)

(6a)

revSN =
decS,Pot

E∗
S

KM,S+E∗
S
/βS

kEE∗
S/βE

= revSC
βE
βS

, (6b)

where kE is rate of enzyme turnover, KM,S is the enzyme’s
substrate affinity, decS,Pot is enzyme saturated decomposi-
tion flux (A4), and β are C/N ratios of the respective pools.

There are two resulting partitioning coefficients, αC and
αN with C or N-limited microbial biomass, respectively. In
order to avoid frequent large jumps under near co-limitation,
SEAM implements a smooth transition between these two
cases as a weighted average.

α=
wCLimαC +wNLimαN

wCLim +wNLim
, (7)

where w is the strength of the limitation of the respective el-
ement, specifically the ratio of required to available biomass
synthesis fluxes (A13).

2.4 Prototypical simulation experiments

Several prototypical simulation experiments (Table 4) were
used to explore the consequences of the different microbial
enzyme allocation strategies (2.3) for the simulated SOM
dynamics. They increase in complexity from a soil incuba-
tion experiment to a decadal CO2 manipulation treatment.
All experiments used parameter values given in Table A1
unless stated otherwise in this section. For the prototypi-
cal experiments, the inorganic N pool was kept constant at
I = 0.4 gN m−2, while inorganic N feedbacks were consid-
ered in Section 2.5.

The VarN-Incubation experiment explored how effi-
ciently substrates of a given stoichiometry were used for mi-
crobial biomass growth with the different enzyme allocation
strategies. A simplified model version was employed in this
experiment, where all the inputs and feedback to the sub-
strate pools (L and R) were neglected, and in which these
pools were kept constant (dL/dt= dR/dt= 0). This sim-
plification led to a quasi steady state of microbial biomass
and enzyme levels for the given substrate supply. This ex-
periment mimics a short-term incubation experiment, where
changes in litter and residue pools are negligible small. The
assumed boundary conditions for this experiment were fixed
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Table 4. Prototypical simulation experiments

Experiment Explored issue

VarN-Incubation Efficieny of using given fixed sub-
strate levels that vary by N content

Substrate-feedback Possibility and size of steady state
substrate pools

Priming Increased substrate decomposition
and mineralization after a pulse
addition of fresh litter

CO2-Fertilization N mineralization with a continued in-
put of increased litter C but constant
litter N inputs

substrate carbon of L= 100 gC m−2, and R= 400 gC m−2.
The C/N ratio of the residue pool was assumed constant at
βR = 7, whereas litter C/N ratio varied between 18 and 42
(βL = [18, ..,42]).

The Substrate-feedback experiment explored the decadal
trajectories of the entire system including feedback to the
substrate pools. Litter input was assumed constant at a rate
of inputL = 400 gC m−2yr−1 with a C/N ratio of βinputL =
30.

The Priming experiment explored the effect of rhizo-
sphere priming, i.e the input of fresh litter into a volume of
subsoil that is newly explored by a root. Specifically, the sim-
ulations evaluated the fluxes after an addition of 50 gC m−2

and a respective amount of N (C/N ratio βinputL = 30)
on a soil that otherwise received a litter input of only 30
gC m−2yr−1 (and respective N with βinputL = 30) for a
decade. The assumption is made that the rhizodeposition lit-
ter input (both pulse and continuous) was very easily degrad-
able litter, specifically with a maximum turnover of kL =
10 day−1. The amendment of rhizodeposition was simulated
by a single pulse, i.e. a step change in the litter pool.

The CO2-Fertilization experiment explored the effect of
increased continuous litter C input, which is expected with
elevated atmospheric CO2 concentration. The simulations
started from steady state corresponding to initial litter C in-
put of inputL = 400 gC m−2yr−1, applied 20% increased C
inputs during years 10 to 60, and applied initial litter inputs
again during the next 50 years. The litter N inputs were kept
constant over time, implying an increase in the litter C/N ra-
tio of 20%. Litter input rate was assumed constant across the
year.

2.5 Calibration to a fertilised pasture site

To test the capacity of SEAM to simulate the net carbon stor-
age of a pasture site including feedback of the inorganic N
pool, we calibrated the model to data of an intensive pasture.
The intensive pasture calibration was tackled only with the

Revenue strategy, because the Match and the EnzMax strate-
gies had already shown inadequate for scenarios including
feedbacks to substrate pools during in the Substrate-feedback
experiment. The control case of the Fixed strategy did not al-
low for adaptation of microbial enzyme allocation.

The model drivers and most of the parametrisation (Tables
A1 and 1) were taken from Perveen et al. (2014). The site is a
temperate permanent pasture located at an altitude of 1040m
a.s.l. in France (Laqueuille, 45°38’N, 2°44’E), receives an
annual precipitation of 1200 mm and has an annual mean
temperature of 7 °C.

The N-balance of the fertilised pasture is characterised by
very high N-inputs. A fraction of this N is sequestered in
accumulating SOM, a fraction is lost to leaching, while the
remainder is exported with plant biomass harvest. Plant up-
take of inorganic N was computed as the sum of plant litter
production and plant biomass exports, keeping the plant N
pool constant.

Model parameters were chosen corresponding to Table 1
in Perveen et al. (2014), and initial litter and SOM pools were
prescribed to observed values. Three parameters were cali-
brated: the maximum decomposition rates of substrate pools,
kL and kR, and the anabolic carbon-use efficiency, ε. Ini-
tial pools of microbial biomass and enzymes were set to the
decadal steady state in order to prevent large transient initial
fluctuations in model pools. The calibration used the optim
function from R stats package (R Core Team, 2016) and min-
imised the differences between model predictions and obser-
vations normalised by the standard deviation of the observa-
tions. The calibration used observations of the litter OM, the
inorganic N, leaching, and rate of change of the total SOM
pool (≈ dR/dt if L is near quasi steady state).

Subsequently, the calibrated parameters were used to gen-
erate predictions for several scenarios of altered inputs to the
system.

The R-code to generate the results and figures of this paper
is available upon request.

3 Results

First, the results of several prototypical artificial simulation
experiments clarify the general behaviour and features of
the SEAM model. Next, results of a parameter calibration
demonstrate the model’s ability to simulate the observed C
and N dynamics of an intensive pasture and explore feed-
backs with the dynamics of the inorganic N pool.

3.1 Prototypical simulation experiments

Under the VarN-Incubation experiment, in which the sub-
strate pools were fixed, there were marked differences in the
effect of allocation strategies on simulated biomass and the
imbalance flux (Fig. 3).
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CUE cnDOM
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Figure 3. VarN-Incubation experiment: The match enzyme alloca-
tions strategy yielded highest resource efficiency, i.e. lowest miner-
alization fluxes (negative or small N mineralization and at the same
time no C overflow respiration) across a large range of C/N ratios.
Microbes with alternative strategies, however, were more compet-
itive as indicated by a higher biomass. The patterns are caused by
different adatption of resource allocation (α) affecting C/N ratio of
the decomposition flux (cnDOM) and carbon use efficiency (CUE).

The Match strategy allowed balanced growth, and yielded
the highest substrate efficiency and lowest mineralization
fluxes among the enzyme allocation strategies. Across a
range of litter C/N ratios of 22 to 42 the Match strategy
yielded non-positive imbalance fluxes, i.e. no mineralization
of excess N or overflow respiration of excess C. This means,
that microbes could utilize all food taken up for productive
expenditures. However, the match strategy also yielded low-
est biomass among the strategies. In the discussion we argue
that this means an inferior strategy.

With the Revenue strategy, enzyme allocation α also var-
ied with litter N content, but to a lesser extent. With lit-
ter containing enough N (low C/N ratio), still about 5% of
the enzyme synthesis C expenditures were allocated into R-
degrading enzymes. With high C/N ratio of litter, investment
into R-degrading enzymes increased to about 30%, much less
than with the Match strategy. Hence, the Revenue strategy
yielded higher overflow respiration associated with a low
carbon-use efficiency (CUE). However, it gained more of
the limiting element N with the decomposition flux and sup-
ported higher microbial biomass.

The Fixed strategy yielded higher N-mineralization due to
larger stoichiometric imbalance at low C/N ratios. At high
C/N ratios its constant allocation coefficient was intermediate
between the other strategies, leading to intermediate values
of all the other outputs.

The EnzMax strategy yielded predictions that were equal
to the Match strategy with low C/N ratios, and equal to the
Fixed strategy with high C/N ratios, and a transition between
those two at C/N ratios around 23.

When the substrate pools were allowed to be refuelled by
microbial and enzyme turnover with the Substrate-feedback
experiment, both Fixed and the Revenue strategies caused
substrate pools to approach a steady state. However, the mi-
crobes with Match strategy solely degraded the stoichiomet-
rically better matching N-rich residue pool, R. Hence, they
declined together with the residue pool despite the large
amount of N accumulating in the stoichiometrically less
favourable litter pool, L, (Fig. 4). Similarly, with EnzMax
strategy the litter pool accumulated until microbes became
C limited. Then there was an unreasonable explosion-like
increase of microbial biomass, until the accumulated litter
pool had been degraded. Because of the Match and the Enz-
Max strategies yielded unreasonable behaviour when includ-
ing feedback to substrate pools in the model, they were omit-
ted in the following simulation experiments.

When the soil was amended with a pulse of litter with the
Priming experiment, a clear true priming effect, i.e. an in-
creased decomposition of the existing SOM, was simulated
with the Fixed and Revenue strategy. The priming effect oc-
curred due to a strong enhancement of residue decomposition
(Fig. 5 top). This enhancement was stronger with the Rev-
enue strategy than with the Fixed strategy, primarily because
of a higher simulated microbial biomass with the Revenue
strategy. In consequence, also the N-mineralization flux due
to microbial turnover was larger with the Revenue strategy
(Fig. 5 bottom). Note, that the time scale of the simulated
priming effect of more than 100 days was longer than ob-
served in priming experiments.

When the continuous litter C input was assumed to be
higher for 50 years with the CO2-fertilisation experiment,
enzyme allocation strategies yielded marked difference in
SOM stocks (Fig. 6) and nutrient recycling (Fig. 7). While
litter stock, L, increased with both strategies following the
increased input, the residue stock, R, slightly increased with
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Figure 4. Substrate-feedback experiment: The match strategy was
not viable when considering feedback to substrate pools. Microbes
with the Match-strategy degraded the stoichiometrically matching
but declining R substrate pool and their biomass, B, declined despite
the large N stores in stoichiometrically less favourable litter, L. Note
that the range of B and L has been limited and does not display the
unreasonably large values with the Match and EnzMax strategies.

the Fixed strategy, but declined strongly with the Revenue
strategy. This was the consequence of an increased mining of
the R pool with the Revenue strategy. Accordingly, N miner-
alization was much stronger with the Revenue strategy dur-
ing the elevated CO2 period, with the largest contribution
from mineralization by microbial turnover.

In this experiment the initial N immobilization flux
was sufficient to avoid microbial N limitation (−ΦB <
uimmo,Pot). The increased C-inputs during the period of ele-
vated CO2 then shifted the system to microbial N limitation,
where required N immobilization was larger than the maxi-
mum immobilization flux. The adaptive Revenue strategy in
effect helped plants to liberate more N from the SOM under
elevated CO2 in the following way. There was a net trans-
fer from SOM R pool to living biomass and subsequently to
microbial turnover that was in part mineralized. The miner-
alization of the turnover of the increased microbial biomass
returned more N to the mineral N pool than was taken up
by the immobilization flux of living microbes. The increased
mineral N pool then could be utilized by plants. However,
this response was transient. After litter inputs returned to ini-
tial values, the system recovered towards the initial state but
only on centennial time scale that would even be longer if
prescribing a longer turnover time for slower SOM pools.

3.2 Intensive pasture simulation

The calibrated SEAM model successfully simulated the ob-
served C and N balance of the Laqueuille intensive pasture
(Figure 8). In contrast to the prototypical simulation exper-
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Figure 5. Priming experiment: Both depolymerisation of the
residue substrate pool, R, and total N mineralization Φ were stim-
ulated most strongly with the Revenue strategy after a subsoil has
been amended with a pulse of fresh litter compared to a control with
no amendment (thin horizontal lines).

iments, here, the feedback of the inorganic N pool was in-
cluded, the model was driven and compared to observed val-
ues, and only the Revenue strategy has been considered.

The observed continuous build-up of an organic N pool in
the residue SOM was driven by the system’s positive N bal-
ance. Two pathways caused the model behaviour in SEAM.
First, inorganic N was taken up by the plant and returned to
the soil via organic N in litter. Second, microbial biomass
immobilised inorganic N due to its stoichiometric imbalance
with the substrate. The microbial biomass was N-limited
when only considering uptake of organic substrate. However,
it was C-limited when accounting for immobilisation of in-
organic N (Table 2).

Simulated alteration of C and N inputs to the system
strongly affected the internal SOM and nutrient cycling. Ef-
fects were shown by several simulation scenarios that started
from the calibrated state but applied a step change in inputs
of litter or inorganic N (Figure 9) as detailed in following
paragraphs.

Increased litter C input by 50% together with an increased
litter C/N ratio by 25% (elevated CO2 scenario) caused a
shift in enzyme allocation towards enzymes degrading the N-
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Figure 6. C-Stocks in the CO2-Fertilization experiment: The Rev-
enue strategy led to a mining, i.e. decrease, of the residue substrate
pool, R during increased carbon litter inputs in years 10 to 60.

rich residue pool and an increase of the litter pool. The higher
input also increased the mineral N demand of both the plant
to balance increased biomass synthesis and the microbial
biomass with its higher stoichiometric imbalance. The re-
sulting decrease in mineral N also decreased leaching losses.
Moreover, ecosystem available N was re-used more often,
because of a higher turnover flux of N in increased microbial
biomass.

Decreased inorganic N inputs from 22.9 g m−2yr−1 down
to 1 g m−2yr−1 together with a doubling of litter C/N ra-
tio caused a strong shift in enzyme allocation towards en-
zymes degrading the N-rich residue SOM with similar con-
sequences as with increased C input, such as an increase in
litter OM. However, in this scenario, the decreased N in-
puts caused a depletion of the mineral N pool. As a conse-
quence, the microbial biomass could not use immobilisation
to balance substrate stoichiometry and became microbially
N-limited. This caused overflow respiration and a decreasing
trend in residue SOM.

Increased inorganic N inputs from 22.9 g m−2yr−1 up
to 25.6 g m−2yr−1 together with a decrease of litter C/N
by 25% did not much affect the system behaviour, because
the soil system was already C-limited before. The microbial
biomass could only immobilise a small fraction of the addi-
tional N to build up new SOM. Instead, N accumulated in the
inorganic pool with associated increased losses to leaching.
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Figure 7. N Mineralization in the CO2-Fertilization experiment:
Mineralization of microbial turnover contributed most of the lib-
eration of SOM-N with the Revenue strategy during microbial N
limitation. After the end of the fertilisation at year 60, microbes
with the Revenue strategy continued to more strongly immobilize
N (negative flux ΦB).
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ganic N, I , and N leaching rate.

4 Discussion

Microbial adaptation of enzyme synthesis to substrate avail-
ability benefited the community so that higher microbial
biomass levels could be sustained on a wider range of sub-
strate stoichiometry. The different prototypic simulation ex-
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Figure 9. Simulated dynamics after prescribed alteration of C and
N inputs for Laqueuille intensive pasture site: Shifts in enzyme al-
location (α) led to changes in the evolution of organic and inorganic
pools and N mineralization fluxes. Increased N substrate limitation,
either due to elevated CO2 or due to decreasing inorganic N inputs,
caused a decrease in mineral N pool, I . If the substrate N limita-
tion could not be balanced by inorganic N input, then the change
rate of the residue pool, dR, decreased down to negative values, i.e.
decreasing SOM pools.

periments and the simulation of the intensive pasture led to
similar conclusions on the effects of adaptation of enzyme
allocation.

4.1 Amounts of substrates matter

The amount of substrate and the substrate stoichiometry are
both important for regulating enzyme allocation. The Match
strategy failed to account for substrate amount, assuming that
microbes adapt to achieve balanced growth under a wide
range of substrate stoichiometry (Moorhead et al., 2012; Bal-
lantyne and Billings, 2014). This strategy yielded lower mi-
crobial biomass both in the VarN-Incubation (Fig. 3) and in
the Substrate-feedback experiments (Fig. 4). We argue that
producing less biomass means an inferior strategy, because
slower growing microbes have a competitive disadvantage to
faster growing microbes that have otherwise same properties
such as maintenance requirements. Match-strategy microbes
focused on degrading a stoichiometrically balanced, but de-
clining residues pool, leaving the large amount of N available
in a stoichiometrically less favourable litter pool untouched
(Fig. 4).

The study of Averill (2014) also found that the best mi-
crobial allocation strategy maximised growth instead of C
or N use efficiency. It found that with C limitation the best
allocation would be strictly equal to all the enzymes. How-
ever, the study did not yet consider feedbacks to the substrate
pools, nor immobilization of inorganic N. Moreover, it used
a decomposition equation that was completely independent
of the amount of available substrate. The proposed EnzMax
strategy would allocate the same amount of resources to en-
zymes that depolymerize a tiny substrate pool as to enzymes
that depolymerize a large substrate pool. The EnzMax strat-
egy was implemented in this study with a different decompo-
sition equation (A4). This combination led to unreasonable
behaviour in the Substrate-feedback experiment. During N
limitation a large litter pool was built up, and after microbes
became C limited they grew explosive-like to unreasonable
high values until the accumulated amount of litter had been
degraded (Fig. 4).

These findings imply that microbial enzyme allocation
strategies should account for substrate amounts.

4.2 Community adaptation leads to a more efficient
substrate usage

The adaptive Revenue strategy consistently supported higher
biomass and had lower N mineralization fluxes at steady state
compared to the non-adaptive Fixed strategy with the VarN-
Incubation experiment (Fig. 3). Similar patterns appeared
with the other experiments (Figs. 4 and 7). Such better sub-
strate usage is in line with results of individual based small-
scale modelling (Kaiser et al., 2014). The finding implies that
N mineralization fluxes with imbalanced substrates may be
lower than inferred from previous modelling studies that did
not account for community adaptation.

4.3 Comparison to observed changes in enzyme
stoichiometry

The SEAM model focuses on community adaptation of en-
zyme synthesis. It predicts a change in the ratio of enzyme
activities of enzymes degrading C-rich plant litter versus en-
zymes degrading the N-rich residue SOM when changing in-
puts of N to the soil. While only low variation in stoichiom-
etry of N-degrading versus C-degrading enzymatic activity
is observed across biomes (Sinsabaugh et al., 2009), micro-
cosm studies detect short-term changes of enzyme activities
with N fertilization (Kumar et al., 2016), but their observa-
tions differ between different kinds of N-degrading enzymes.
Hence, the evidence is mixed.

SEAM also predicts accelerated turnover of the residue
pool associated with increased enzyme activity of N-rich R-
pool degrading enzymes after increased inputs of litter C in
relation to litter N. Such patterns are observed at field scale at
Duke forest, where Phillips et al. (2011) found an increased
activity of extracellular enzymes involved in breakdown of
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organic N associated with accelerated SOM turnover after
increased root exudation with elevated CO2. In an artificial
root exudation experiments at the same site, Drake et al.
(2013) found an increase of N degrading NAG enzyme activ-
ity with C-only inputs and a shift from oxidative towards hy-
drolytic enzymes decomposing low molecular weight (lmw)
components inputs that contained both C and N. Assuming
that the lmw-components have higher C/N ratios, this ob-
served shift is in line with SEAM predictions.

4.4 SOM as nutrient bank

Nitrogen was stored in residue SOM during periods of high N
inputs and released during periods of low N inputs relative to
C inputs in simulations (Fig. 6). When there was excess litter
C, the microbial community preferentially depolymerised, or
mined, the N-rich residue pool, and thereby made the N avail-
able for plants. When carbon inputs were low, microbes de-
graded the residue pool to a lesser extent, but continued to
build new residue via microbial turnover. Hence, under low
C conditions, the microbes kept N in the decomposer system
instead of releasing it through mineralisation.

This ’bank’ mechanism (sensu Perveen et al., 2014) also
worked when simulating the intensive pasture (Fig. 9). Dur-
ing simulations of high inorganic N inputs, N was se-
questered in SOM at a high rate. With decreased inorganic
N inputs, the sequestration rate decreased until it became
negative, that is the N in slower decomposing SOM pools
was mined. In the long-term, i.e. centuries, the inputs to the
system have to balance the outputs of the system. Hence, in
the intensive pasture simulation, inorganic N pools and N
leaching increased with the increase of SOM with the SEAM
model. The conservation or release of N by the bank mecha-
nism implies greater potential for ecosystems to avoid pro-
gressive N limitation (Norby et al., 2010; Franklin et al.,
2014; Averill et al., 2015). This finding potentially has con-
sequences on feedbacks of global change, especially on the
projected C land uptake (Friedlingstein et al., 2014).

4.5 Priming effects liberate N

Priming effects, i.e. the altered decomposition of SOM af-
ter soil amendments (Kuzyakov et al., 2000), are a potential
mechanism to help plants stimulate N release from the SOM
for plant nutrition. Priming effects and associated increased
N mineralization were simulated for both, the Fixed and Rev-
enue strategies (Fig. 5). With adaptive microbial enzyme al-
location (Revenue strategy), increasing plant litter input or
increases in litter C/N upregulated the decomposition of the
N-rich residue pool (Fig. 6). This in turn influenced the dis-
tribution of N in the ecosystem, and N availability for plants
(Fig. 7). This active role of plant inputs has been demon-
strated in a soil incubation experiment (Fontaine et al., 2011)
and has been further conceptualised with the SYMPHONY
model (Perveen et al., 2014). Our results are in line with these

studies, although our explanation is on a more abstract level
(see Section 4.7).

Mineralization of microbial turnover was necessary in
SEAM to allow liberation of N by priming effects. With-
out sufficient microbial turnover mineralization, changes in
litter inputs could not shift the system to microbial N limita-
tion in additional simulation experiments (C). These findings
corroborate the need for representing the effects of soil het-
erogeneity (Manzoni et al., 2008) and microbial turnover by
grazing (Clarholm, 1985; Raynaud et al., 2006) for making
N available for plants under N limitation.

4.6 Mismatch in time scale of priming effects

The unrealistically long time-scale of the priming effect of
several months in SEAM (Fig. 5) resulted from both, the long
turnover time of enzymes, and the sustaining positive feed-
back between amounts of microbial biomass and enzymes. It
was in contrast with incubation studies that observe priming
effects within days or weeks that rapidly declined after the
amendment has been used up (Blagodatskaya et al., 2014).
The priming timescale in SEAM was longer than the dura-
tion of the uptake pulse of the L amendment that only lasted
a few days. It was controlled by simulated lifetime of en-
zymes and enzyme turnover, which SEAM described as first
order kinetics with a turnover of about a week. Moreover, the
priming timescale was prolonged by the positive feedback of
increased microbial biomass producing more enzymes that
again fuelled microbial biomass.

One possible hypothesis for a shorter priming time-scale
is a different dynamics of enzyme turnover. However, pre-
scribing a shorter turnover time of enzymes would require
an unrealistically large effort of producing enzymes by mi-
crobial biomass. More sophisticated models of different en-
zyme turnover kinetics including stabilisation of a part of the
enzymes on mineral surfaces (Burns et al., 2013) may be able
to resolve such contradictions. Testing this hypothesis would
require observations of the fraction of C uptake allocated to
enzyme synthesis and on age distribution of enzymes in the
soil which might be feasable with labelling studies.

An alternative cause for a shorter priming time-scale may
be an important control of enzyme activity that is not as
strongly coupled to microbial biomass dynamics. Some en-
zymes such as peroxidase need to be fuelled by labile OM
themselves (Rousk et al., 2014) with no immediate rela-
tionship to microbial biomass dynamics. This explanation,
however, implies that enzyme activity and decomposition of
SOM become largely decoupled from enzyme synthesis and
microbial dynamics in the short-term. This option is contrary
to the assumption of most current models that simulate the
priming effect. Such a fundamental change of model assump-
tion would affect most implications gained from SOM mod-
elling studies that involve soil microbes.

Another cause for a shorter priming time-scale, is a di-
minished sustaining positive feedback between enzymes and
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microbial biomass. Currently, grazing is modelled as an im-
plicit part of a first-order microbial turnover. With increasing
microbial biomass, grazers become more efficient (Clarholm,
1981). With implementing a time-lagged stronger increase in
microbial turnover rate with microbial biomass, biomass lev-
els would decrease faster to pre-treatment levels and help to
shorten the time-scale of the priming effect. Testing this hy-
pothesis requires data on grazing during priming effects.

Overall, the mismatch in the time scale of priming between
simulations and observations hints to gaps in understanding
of short-term SOM turnover. However, this model limitation
does not impair the simulated longer-term microbial com-
munity controls on SOM cycling both in the prototypic sim-
ulation and at the pasture site. We argue therefore that the
simulated decadal patterns are robust, because they are more
strongly controlled by the proportions in enzyme synthesis
than by the time scale of priming effects.

4.7 A holistic view for upscaling

The presented SEAM model takes a holistic view (Panikov,
2010) of microbial community and their adaptations instead
of explicitly describing microbial diversity. In this respect, it
differs from the SYMPHONY model (Perveen et al., 2014)
and similar models (Fontaine et al., 2003), which explicitly
model several microbial groups. However, the effective be-
haviour of the presented SEAM model is similar to these
models. SEAM assumes that community composition adapts
to external drivers. Specifically, SEAM describes an adap-
tive allocation of resources into depolymerisation of differ-
ent substrates by assuming that the community composition
reacts to changed substrate availability in a way to balance
microbe’s revenue of the currently limiting element. While
the mechanistic approach of the SYMPHONY model explic-
itly represents this adaptation by shifts between microbial
groups, the holistic approach represents its effects at com-
munity level. While the mechanistic approach provides more
detailed understanding, the proposed abstraction of microbial
competition is a step forward to better represent couplings
of soil carbon and nutrient cycles in large-scale ecosystem
models, as it obviates the need to correctly parameterise the
underlying details of several microbial guilds.

The holistic SEAM model yielded qualitatively similar
predictions as the mechanistic SYMPHONY model with
simulating priming effects, the bank mechanism, and a con-
tinuous SOM sequestration under high inorganic N inputs.
SEAM differed from SYMPHONY in the prediction of the
inorganic N pool during low N inputs. Specifically, SEAM
predicted a decrease in this pool, while SYMPHONY pre-
dicted an increase in this pool due to changed competition
(Perveen et al., 2014). The difference is probably caused by
different assumptions on how the DOM pool is shared among
groups of the microbial community and resulting different
competition conditions. In SEAM, decomposition products
become mixed in a shared DOM pool, while in the SYM-

PHONY model the decomposition products are not shared
between the microbial groups. The truth at pore scale is in
between, in that decomposition products are mainly used by
the group that is producing the extracellular enzymes, while a
part of the DOM diffuses also to other groups (Kaiser et al.,
2014). At larger scales, such details cannot be measured or
resolved. The difference in model prediction implies that the
rationality of the simplified model assumptions of a mixed
DOM pool can be qualitatively tested against observations.

4.8 Testable predictions of change of SOM C/N ratios

The SEAM model can be used to predict decadal patterns of
SOM cycling following changes in substrate stoichiometry.
Observations of such patterns provide evidence for or against
the modelling assumptions. Specifically, SEAM predicted a
change in proportions of the litter pool and the SOM pool
(Fig. 6). While these abstract pools are not directly compa-
rable to observations, a measurable consequence is the as-
sociated change of total SOM C/N ratio at the time scale
of turnover of the residue pool. Specifically, SEAM pre-
dicted a decline in SOM stocks and an increase of SOM C/N
with FACE experiments at formerly C-limited systems over
time scales of several decades. Observed accelerated SOM
turnover at the Duke forst after 12 years of elevated CO2

(Drake et al., 2011) is a first indications, although there ist a
continuum of responses to experimental CO2 increase across
sites.

4.9 Outlook

The biggest limitation of the SEAM model is its focus on
a single process: community adaptation of enzyme alloca-
tion. In order to focus, we had to ignore several other im-
portant processes. One such process is the second microbial
community strategy of handling substrate stoichiometric im-
balance, the adaption of stoichiometry of microbial biomass.
Although the potential of this biomass adaptation is thought
to be quite limited (Mooshammer et al., 2014b), it will need
to be tested whether these two strategies can be combined
within a model.

Next, the optimality principle will be extended to also de-
termine the proportion of uptake that is allocated to enzyme
synthesis. Presence of cheaters, i.e. microbes that consume
substrate but without producing enzymes, effectively lower
the community-level allocation to enzymes (Kaiser et al.,
2014). We could assume that community development max-
imizes biomass production. Such an assumption can be used
to compute the optimal community enzyme synthesis and al-
lows exploring effects on SOM cycling, such as more con-
strained carbon and nutrient use efficiencies.

Moreover, SEAM will be simplified by assuming quasi-
steady state of biomass or enzyme pools (Wutzler and Reich-
stein, 2013). These simplifications will lead to fewer parame-
ters and improved parameter identifiably in model calibration
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to observations (Xu et al., 2014). Together with implement-
ing the influence of environmental factors such as tempera-
ture and moisture (Davidson et al., 2012), these changes will
make SEAM more suitable to be used as a component within
larger scale land surface models.

5 Conclusions

The SEAM model (Fig. 1) provides a holistic description of
community adaptations. It yields qualitatively similar predic-
tions as microbial-group-explicit models with the ability to
represent priming effects, bank mechanism, and a continu-
ous SOM sequestration with high inorganic N inputs (Fig.
9). Hence, this study is an important step for providing an ab-
stract description of microbial community effects and adap-
tations, with the long-term goal of including the important
mechanisms into earth system models.

Adapting the allocation of resources into the synthesis of
different enzymes can be an effective means of the micro-
bial community to react to changing substrate stoichiometry.
Allocation adaptation strategies helped the simulated micro-
bial biomass in SEAM to grow larger across a wider range
of substrate stoichiometry (Fig. 3). Among the tested strate-
gies, the Revenue strategy, which accounts for the amount
of substrate pools and their stoichiometry, was particularly
successful. These findings imply that models simulating soil
carbon and nutrients dynamics (Fig. 5) need to account for
adaptations in carbon and nutrient strategies. Accounting for
adaptations will be especially important when studying the
competition for nutrients between soil microorganisms and
plants, because SOM can function as a storage to sequester
surplus nutrients and prevent them from being lost from the
system (Fig. 6 and 7).
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Appendix A: SEAM equations

For an overview of symbol definitions see tables 1, A1, and
A2.

A1 Carbon fluxes

dB

dt
= synB−tvrB (A1a)

dEL
dt

= (1−α) synE−tvrEL (A1b)

dER
dt

= α synE−tvrER (A1c)

dL

dt
=−decL+inputL (A1d)

dR

dt
=−decR+εtvr tvrB+(1−κE)(tvrER+tvrEL),

(A1e)

where α is the proportion of total investment into enzymes
that is allocated to the residue pool R (section 2.3), inputL
is the litter C input to the system, εtvr is the fraction of mi-
crobial turnover C that is respired by predators, and κE is the
fraction of enzyme turnover that is transferred to the DOM
instead of the R pool. The specific fluxes are detailed below.

Total enzyme production synE , maintenance respiration
rM , and microbial turnover tvrB are modelled as a first-order
kinetics of biomass:

synE = aEB (A2a)
rM =mB (A2b)

tvrB = τB (A2c)

Enzyme turnover (tvrER and tvrEL) is modelled as first-
order kinetics of enzyme levels.

tvrES
= kEES , (A3)

where S represents the litter L and residueR substrate pools,
respectively.

Substrate depolymerisation is modelled first-order to sub-
strate availability with a saturating Michaelis-Menten kinet-
ics to enzyme levels:

decS,Pot = kSS (A4a)

decS = decS,Pot
ES

KM,S +ES
(A4b)

The DOM pool is assumed to be in quasi steady state, and
hence, the sum of all influxes to the DOM pool (decomposi-
tion + part of the enzyme turnover) is taken up by microbial
community.

uC = decL+decR+κE(tvrER+tvrEL) (A5)

Under C limitation, C available for synthesis of
new biomass and associated catabolic growth respiration,

CsynBC, is the difference between C uptake and expenses for
enzyme synthesis (eq. A2a) and maintenance respiration (eq.
A2b).

CsynBC = uC − synE /ε− rM (A6)

If the C balance for biomass synthesis, synB (eq. A11), is
positive, only a fraction ε, the anabolic carbon use efficiency,
is used for synthesis of biomass and enzymes, whereas the
rest is used for catabolic growth respiration rG to support this
synthesis. For simplicity, the SEAM assumes ε to be the same
for all substrates. The model assumes that requirements for
enzyme synthesis and maintenance must be met. Hence, the
microbial C balance can become negative where microbial
biomass starves and declines.

synB =

{
εCsynB, if CsynB > 0

CsynB, otherwise
(A7a)

rG =

{
(1− ε)CsynB, if CsynB > 0

0, otherwise ,
(A7b)

where CsynB is the C balance for biomass synthesis and is
given below by eq. A11.

A2 Nitrogen fluxes

Nitrogen fluxes and pools are derived by dividing the respec-
tive fluxes with the C/N ratio, β, of their source.

The C/N ratios βB and βE of the microbial biomass and
enzymes are assumed to be fixed. However, the C/N ratio
of the substrate pools may change over time and thus the
substrate N pools are modelled explicitly.

dLN
dt

=−decL /βL + inputL /βi (A8a)

dRN
dt

=−decR /βR + εtvr tvrB /βB+

(1−κE)(tvrER+tvrEL)/βE (A8b)
dI

dt
= +iI − kIP − lI + Φ (A8c)

Φ = Φu + ΦB + Φtvr (A8d)
Φu = (1− ν)uN,OM , (A8e)

where the balance of the inorganic N pool I sums inorganic
inputs iI , plant uptake kIP , leaching lI , and the exchange
flux with soil microbial biomass, Φ. The latter is the sum of
the apparent mineralization due to soil heterogeneity (Man-
zoni et al., 2008), Φu, mineralisation-immobilisation imbal-
ance flux, ΦB (A12c), and mineralisation of a part of micro-
bial turnover ,Φtvr (A14b, section A5).

Organic N uptake, uN,OM , was modelled as a parallel
scheme (PAR), where a part of the organic N that is taken
up from DON is mineralised at soil core scale accounting for
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Table A1. Model parameters. The two value columns of initial values and parameter values refer to the prototypical examples and the
Laqueuille pasture calibration respectively.

Symbol Definition Value Unit Rational

βB C/N ratio of microbial biomass 11 11 g g−1 (Perveen et al., 2014)
βE C/N ratio of extracellular en-

zymes
3.1 3.1 g g−1 (Sterner and Elser, 2002)

βinputL C/N ratio of plant litter inputs 30 70 g g−1 (Perveen et al., 2014) (1/β)
kR maximum decomposition rate

of R
1 4.39e-2 yr−1 calibrated

kL maximum decomposition rate
of L

5 1.95 yr−1 calibrated

kE enzyme turnover rate 60 60 yr−1 (Burns et al., 2013)
κE fraction enzyme tvr. entering

DOM instead R
0.8 0.8 (-) mostly small proteins

aE enzyme production per micro-
bial biomass

0.365 0.365 yr−1 ≈ 6% of biomass synthesis

KM enzyme half saturation constant 0.05 0.05 g m−2 magnitude of DOC concentra-
tion

τ microbial biomass turnover rate 6.17 6.17 yr−1 (Perveen et al., 2014) (s/εtvr)
m specific rate of maintenance res-

piration
1.825 0 yr−1 (van Bodegom, 2007), zero in

(Perveen et al., 2014)
ε anabolic microbial C substrate

efficiency
0.5 0.53 (-) calibrated

ν aggregated microbial organic N
use efficiency

0.7 0.9 (-) (Manzoni et al., 2008)

εtvr microbial turnover that is not
mineralized

0.3 0.8 (-) part of turnover is consumed by
predators

iB maximum microbial uptake rate
of inorganic N

25 25 yr−1 larger than simulated immobi-
lization flux

l inorganic N leaching rate - 0.959 yr−1 (Perveen et al., 2014) (l)

imbalance flux at sub-scale soil spots with high N concen-
tration in DOM (Manzoni et al., 2008). Potential N uptake
is the sum of organic N uptake and the potential immobilisa-
tion flux (uimm,Pot). Uptake from DOM is assumed equal to
influxes to DOM times the apparent N use efficiency ν.

uN = νuN,OM +uimm,Pot (A9a)
uN,OM = decL /βL + decR /βR +κE(tvrER+tvrEL)/βE

(A9b)

uimm,Pot = iBI , (A9c)

where C/N ratios βL and βR are calculated based on current
C and N substrate pools: βL = L/LN .

The N available for biomass synthesis is the difference of
microbial N uptake and expenses for enzyme synthesis. This
translates to a N constraint for the C used for biomass synthe-
sis and its associated catabolic growth respiration: CsynB ≤
CsynBN.

NsynBN = uN − synE /βE , (A10a)
CsynBN = βBNsynBN/ε (A10b)

A3 Imbalance fluxes of C versus N limited microbes

There are constraints of each element on the synthesis of
new biomass and associated growth respiration. The mini-
mum of these fluxes (eq. A11) constrains the synthesis of
new biomass.

CsynB =min(CsynBC,CsynBN) (A11)

The excess elements are lost by imbalance fluxes (eq.
A12). The excess C is respired by overflow respiration, rO,
and the excess N is mineralised, MImb, so that the mass bal-
ance is closed.

rO = uC − (synB+synE /ε+ rG+rM ) (A12a)
MImb = uN − (synB /βB + synE /βE) (A12b)

ΦB =MImb−uimm,Pot (A12c)

The actual mineralisation-immobilisation flux ΦB is the
difference between the potential immobilisation flux and ex-
cess N mineralization. If microbes are limited by C avail-
ability, ΦB will be positive, whereas with substrate N lim-
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Table A2. Further symbols of quantities derived within the system

Symbol Definition Unit

α proportion of enzyme in-
vestments allocated to pro-
duction of ER

(-)

synB C for microbial biomass
synthesis

g m−2yr−1

synES
C synthesis of enzymes de-
grading S ∈ {L,R}

g m−2yr−1

tvrB microbial biomass turnover
C

g m−2yr−1

tvrES
enzyme turnover C g m−2yr−1

decS C in depolymerization of re-
source S ∈ {L,R}

g m−2yr−1

uC ,uN microbial uptake of C and N g m−2yr−1

Φu,ΦB ,Φtvr,Φ N mineralization with
microbial DOM uptake,
stoichiometric imbal-
ance, turnover, and total
Φ = Φu + ΦB + Φtvr (Fig.
2)

g m−2yr−1

itation, ΦB will be a negative flux, corresponding to N im-
mobilisation. With microbial N limitation, i.e. required im-
mobilisation is larger than potential immobilisation, ΦB =
−uimm,Pot and stoichiometry must be balanced by overflow
respiration.

A4 Weight of an element limitation

The weight of an element limitation is computed as the ratio
between required uptake flux for given other constraints to
the available fluxes for biosynthesis.

wCLim =

(
required
available

)δ
=

(
CsynBN

CsynBC

)δ
(A13a)

wNLim =

(
εCsynBC/βB
NsynBN

)δ
, (A13b)

where parameter δ, arbitrarily set to 200, controls the steep-
ness of the transition between the two limitations. XsynBY

denotes the available flux of element X for biosynthesis and
associated respiration given the limitation of element Y (A6)
and (A10).

A5 Turnover mineralization fluxes

In addition to mineralization flux due to stoichiometric im-
balance, a part of microbial biomass is mineralised during
microbial turnover, e.g. by grazing. A part (1− εtvr) of the
biomass is used for catabolic respiration. With assuming that
predator biomass elemental ratios do not differ very much

from the one of microbial biomass, a respective proportion
of N must be mineralized.

rtvr = (1− εtvr) tvrB (A14a)
Φtvr = (1− εtvr) tvrB /βB (A14b)

All the non-respired turnover C enters the residue pool. In
reality, a part of the microbial turnover probably enters the
DOM pool again (e.g. by cell lysis) and is taken up again
by microbial biomass. The increased uptake nearly cancels
with an increased turnover. Hence, SEAM does not explicitly
consider this shortcut loop so that fewer model parameters
are required. Note, however, that turnover, uptake, and CUE
in the model are slightly lower than in the real system where
this shortcut operates.
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Appendix B: Rationale behind the revenue strategy

This section explains in a bit more detail, why allocating re-
sources to several enzymes proportional to the revenue is rea-
sonable from a community perspective

For a single microbe it would be optimal to maximise
growth by investing all resources in the enzyme that max-
imises the return per investment for the currently limiting
element. However, if many microbes compete for the same
best substrate, they also have to share the return of the ex-
tracellular decomposition process. If another microbe targets
the second-best substrate at a different location by produc-
ing a different set of enzymes, it has an advantage of first
accessing the returns before those diffuse to the majority of
microbes located at the substrate with the highest revenue.
When taking this competition into account, it makes sense to
allocate the most resources for the best revenue but also some
resources to the other possibilities. Hence, the revenue strat-
egy allocates resources proportional to their revenue. Note,
however, that this arguments assumes a DOM pool that is not
completely mixed, whereas SEAM employs the simplifying
assuption of a single common DOM pool.

Another argument draws from a similarity to the restric-
tion of risk in financial investments. It is reasonable to in-
vest most into the best revenues, but it is dangerous to in-
vest solely in a single alternative. If the microbial commu-
nity expressed only one type of enzyme, resources might not
be sufficient to newly produce the other enzyme if the best
resource becomes unavailable, e.g. with changing pore con-
nections with changing soil moisture.



18 Wutzler: SEAM model

L
R

L
+

R

0 30 60 90

110

115

120

125

130

135

1100

1200

1300

1200

1300

1400

1500

Time (yr)

C
ar

bo
n 

st
oc

k 
(g

C
 m

−2
)

εtvr

30.0%

30.7%

31.3%

32.0%

32.7%

33.3%

34.0%

Figure C1. C-Stocks in the CO2-Fertilization experiment with
varying mineralization of microbial turnover (1− εtvr): The pat-
terns are similar, unless the system is shifted to another limitation
regime.

Appendix C: Sensitivity to microbial turnover
mineralization

The importance of N mineralization of microbial turnover,
which is caused mainly by predators that graze on microbes
(Clarholm, 1985; Raynaud et al., 2006), was one of the hy-
potheses in the development of the SEAM. This section dis-
cusses SEAM’s sensitivity to parameterization of microbial
turnover mineralization.

To this end we performed the CO2-Fertilization experi-
ment using the revenue strategy again with varying parame-
ter εtvr, the part of microbial turnover that is not mineralized.
We also adjusted microbial anabolic efficiency ε by the same
but inverse factor so that simulation results start from sim-
ilar steady state of SOM stocks, which change with model
parameterization.

The change of the residue pool during the period of in-
creased C inputs was very similar across different parame-
terizations as long as the system followed the same switches
between several limitation states (Fig. C1). Contrary, if the
re-parameterization shifted the system to different limitation
states then the dynamics changed qualitatively. For example
with a value of εtvr = 0.34, there was an initial net N miner-
alization instead of N immobilization, i.e. positive ΦB (Fig.
C2). In the case of an initially large difference between ΦB
and the maximum immobilization flux, the change in amount
and stoichiometry of litter inputs did not drive the system into
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Figure C2. N Mineralization in the CO2-Fertilization experiment:
Mineralization of microbial turnover contributed most of the lib-
eration of SOM-N with the Revenue strategy during microbial N
limitation. After the end of the fertilisation at year 60, microbes
with the Revenue strategy continued to more strongly immobilize
N (negative flux ΦB).

microbial N limitation (−ΦB < uimmo,Pot). This case re-
sulted in the absense of the simulated decrease of the residue
pool (Fig C1). The high initial ΦB values resulted from the
requirement that with the long term steady state, the decom-
poser system must balance its organic litter N inputs by N
mineralization. The required increase in litter C/N ratio that
could shift a system simulated without turnover mineraliza-
tion to N limitation was unreasonably large.

Hence, including the process of mineralization of micro-
bial turnover is crucial to SEAM for simulating a reason-
able dynamics for shifts between C and N limitation. Al-
though the SEAM is not sensitive to the exact specification
in turnover parameters if other parameters are recalibrated,
there are thresholds than can drive the model to different sto-
ichiometric limitations and can lead to substantial changes in
model dynamics.
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