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Abstract The use of kinetic respiration analysis to 
determine soil microbial biomass its active part and 
maximum specific growth rate has recently increased. 
With this method, the increase in soil respiration rate 
initiated by application of carbon growth substrate, e.g. 
glucose, and mineral nutrients is used to estimate 
parameters describing microbial growth in soil. This 
study refines the method by developing statistical 
guidelines for the data analysis and processing. The 
kinetic respiration analysis assumes that microbial 
growth is not limited by substrate and energy. That is 
why it is critically important to identify the time period 
corresponding to the unlimited growth. In this work, 
we studied how the unlimited growth phase can be 
identified in less subjective ways by examining 121 
data sets of respiration time series of 44 different soil 
samples taken from field plots. Deflection of the 
respiratory curve from the exponential pattern indicates 
growth limitation. Subjective selection of the part of 
respiratory curve which fits to the exponential pattern 
resulted in a 30% bias in specific microbial growth 
rates. We propose rules that are based on inspecting the 
patterns in a series of plots of residuals of fitted 
respiration rate. By comparing those rules with a set of 
statistical criteria we find that the weighted-coefficient 
of determination (r2) can be used to objectively 
constrain the unlimited growth phase in those cases 
where double-limitation does not occur. Furthermore, 
we discuss how the uncertainty of estimated microbial 
parameters is influenced by a) measurement 
uncertainty, b) biased measurement at the beginning of 
the experiment, and c) the number and timing of 
respiration measurements.  We recommend checking 
plots of fits and residuals as well as reporting 
uncertainty bounds together with the estimated 
microbial parameters. A free statistical package is 
provided to easily deal with those aspects. 

Keywords Microbial growth rate, Microbial activity, 
Microbial biomass, Respiration kinetics, Uncertainty 
analysis, Non-linear regression 

Introduction 
The determination of the active microbial soil 

biomass is important to characterize soil sustainability 
and to understand the microbial control on the 
decomposition of soil organic matter (SOM) (Stenström 
et al. 2001). The most widely applied methods to 
estimate soil microbial biomass are chloroform 
fumigation extraction (Vance et al. 1987) and substrate 
induced respiration (SIR) (Anderson and Domsch 
1978). However, only kinetic respiration analysis is 
able to distinguish between sustaining and growing 
biomass and is able to quantify the initial activity state 
of the soil microbial biomass (Panikov and Sizova 
1996,  

Blagodatsky et al. )(details in section 2.1). 
Neglecting the activity state and relating rates of soil 
SOM decomposition solely to maximum specific 
microbial growth rates, will lead to approximations of 
the conditions in some soil microzones, e.g. 
rhizosphere, but will not explicitly describe the 
important dynamics in bulk soil (Stenström et al. 2001) 
and the dynamics of the huge amounts of slowly 
decomposing SOM. Hence, the determination of the 
activity state is important to constrain different model 
structures about the role of soil microbial biomass in 
soil carbon decomposition (Wutzler and Reichstein 
2008), which in turn will strongly affect our 
understanding of feedbacks between soil carbon cycling 
and global warming (Heimann and Reichstein 2008). 
Furthermore, quantifying the fraction of actively 
growing biomass, which is capable for immediate 
growth on added substrate, is extremely important for 
the estimation of all microbially mediated process rates, 
as only active microorganisms drive the processes. 
Application of this approach is helpful for the exact 
assessment of microbial community reaction on 
pollution by heavy metals (Blagodatsky et al. 2006), 
quantification of rhizosphere effect (Blagodatskaya 
et al. 2009), impact of elevated CO2 (Blagodatskaya 
et al. 2010) or soil tillage (Blagodatskii et al. 2008). 
With the kinetic respiration analysis a soil sample is 
incubated together with a carbon substrate and substrate 
consumption or respiration is monitored over several 
hours. Microbial properties are inferred by fitting a 
model of microbial growth to the observed respiration 
time series. The usage of the kinetic respiration analysis 

 

 

* corresponding author 
1 Max Planck Institute for Biogeochemistry 

Hans-Knöll-Straße 10, 07745 Jena, Germany 

e-mail: twutz@bgc-jena.mpg.de, tel +49 3641 576271 

2  Institute of Biological and Environmental Sciences 

School of Biological Sciences, University of Aberdeen 

23 St Machar Drive, Aberdeen AB24 3UU,UK 

e-mail: s.blagodatskiy@abdn.ac.uk 

3 Institute of Physicochemical and Biological Problems in Soil 
Science Russian Academy of Sciences, 142290 Pushchino, Russia 
e-mail: sblag@mail.ru 



 2 

has increased over the last several years (Blagodatskaya 
et al. 2010, Blagodatskaya et al. 2009, Dorodnikov 
et al. 2009, Esberg et al. 2010, Gnankambary et al. 
2008, Ilstedt et al. 2006, Ilstedt and Singh 2005, Ilstedt 
et al. 2007, Lipson et al. 2009, Lipson et al. 1999). 
However, a comparison or synthesis of results of this 
method is hampered because of differences in statistical 
and mathematical treatment of respiration data. Hence, 
it is desirable to advance the methodology of the kinetic 
respiration analysis and study how to resolve problems 
associated with this treatment of the data. These 
problems include issues of the statistical analysis of the 
respiration curves, such as:  
1. the selection of a subset of the respiration dataset 

that represents the initial unlimited growth phase 
(i.e. the time of the exponential growth of 
respiration rate)  

2. prior information about the uncertainty of 
respiration measurements 

3. determination of quantity and timing of respiration 
measurements 

4. biasing of the measurements at the beginning of the 
experiment 

This study focuses on problem 1 while discussing 2-4.  
One of the assumptions of kinetic respiration 

analysis is that only those observations of the 
respiration rate are used where soil microbes are being 
activated and grow without limitation. However, 
limitation will occur as soon as supplied growth 
substrates are consumed in the course of the 
experiment. Hence, the observed dynamic of respiration 
rate must be confined to the data subset with no 
significant limitation effects. Applying the model fit to 
different subsets results in different estimates of the 
specific growth rate as shown for the example in Figure 
1. Limitation of growth occurs at the late stage, so it 
would seem that the last 3 to 6 records should be 
discarded. Ignoring the growth limitation and using the 

full dataset would have led to an underestimation of 
specific growth rate by 28% and to differing 
conclusions. On the other hand, discarding too many 
records leads to increasing uncertainty of the estimated 
parameters. In order to compare results between 
different studies, it is necessary to agree on criteria of 
confining the experimental growth phase.  

As can be seen from Figure 1, three standard 
statistical criteria r2, r2w and Q (detailed explanation 
below) suggest different number of records (i.e. 24, 25, 
or 26) to be chosen for estimating the maximum 
specific growth rate. So, the agreement on criteria is 
needed for the successful application of kinetic 
respiration analysis. 

This study addresses all potential users of the 
kinetic respiration method as well as researchers 
estimating microbial specific growth rates using CLPP 
method (Lindstrom et al. 1998, Mondini and Insam 
2003). Users do not need a strong statistical 
background; they are only required to operate a 
computer program (e.g. SAS, R, or ModelMaker) that is 
able to fit a nonlinear model to a given dataset. The 
program should allow specifying uncertainty of the 
respiration data and should provide uncertainty 
estimates together with estimated coefficients. In this 
study, we use the freely available statistical software R, 
specifically the function gnls from package nlme, used 
by the twKinresp package (Wutzler 2010). 

Material and Methods 

The background of kinetic respiration analysis 

With kinetic respiration analysis, a soil sample is 
amended with a carbon substrate, e.g. glucose and 
mineral nutrients to avoid limitation by substrates other 
than carbon. The soil sample is incubated with constant 
temperature and moisture level of 60% water holding 
capacity and the respiration rate is monitored during the 

n=30
mu=(0.187,0.214)
r2=0.98381
r2w=0.99698
Q=0.53188

n=29
mu=(0.199,0.224)
r2=0.98744
r2w=0.99747
Q=0.53683

n=28
mu=(0.211,0.235)
r2=0.99
r2w=0.99794
Q=0.54027

n=27
mu=(0.226,0.245)
r2=0.99399
r2w=0.99866
Q=0.54106

n=26
mu=(0.242,0.254)
r2=0.99788
r2w=0.99938
Q=0.67145

n=25
mu=(0.25,0.261)
r2=0.99965
r2w=0.99964
Q=0.56971

n=24
mu=(0.252,0.264)
r2=0.99978
r2w=0.99952
Q=0.54269

n=23
mu=(0.25,0.264)
r2=0.99967
r2w=0.99926
Q=0.54772

Time 1.9 to 30.9 hour (Experiment 3_2)
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Figure 1: A typical case: plot series of fits of model equation 1 to different subsets of the time series of respiration
data set 3_2. Black points: n records that are included in the model fit, grey points: excluded records, mu: 95%
confidence interval of maximum growth rate, r2: coefficient of determination, r2w: Q: alternative goodness of fit
measure. Bold text indicates the maximum of the measure.
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following 24-48 hours (experimental details are 
described below in the following section). Under such 
conditions of initially unlimited microbial growth an 
exponential increase of the respiration rate is observed. 
The increase in respiration often cannot be explained 
solely by growth of microbial biomass. One explanation 
is that many microbial cells in soils are usually in an 
energy-saving sustaining state and are initially not a full 
potential to metabolize the substrate but must adapt 
their molecular equipment (Panikov 1995). Hence the 
population or microbial community will change from a 
physiological state of low activity towards their full 
potential metabolic activity. The physiological state is 
the fraction of actual to potential substrate turnover of 
the microbial community that is responding to the 
substrate addition. In chemostat this is interpreted as the 
state of most of the cells (Appendix A), however, in 
heterogeneous soil it can also be interpreted as the 
fraction of sustaining cells to fully active cells ( 
Blagodatsky et al. ). With kinetic respiration analysis 
the respiration curve (eq. 1) is fitted to the respiration 
rates and used to calculate microbial parameters.  

  2
1

t
op t e  

 (1) 
where p(t) is the measured respiration rate at time t, 
expressed as respired CO2-C per time, i  are fitted 
coefficients. This respiration curve and the coefficients 
are interpreted in slightly different ways (Colores et al. 
1996, Marstorp and Witter 1999,  
Stenström et al. ). Here, we concentrate on the 
interpretation where the growth associated respiration is 
allowed to change with changing activity of microbial 
biomass (eq. 2 to 4) (Panikov 1995, Panikov and Sizova 
1996). In the beginning the exponential curve is often 
dominated by adapting the physiological state of the 
cells, called the lag-phase. During this phase often only 
weak increase in microbial biomass is observed. Later 
on during the so called exponential growth phase, the 

respiration curve is dominated by growth of the active 
microbial biomass.  
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where max is maximum specific growth rate, i.e. 
potential maximum of fully active cells, r0 is the initial 
physiological state, x0 is the initial biomass. Those three 
are the microbial parameters of interest. Parameter  is 
the ratio between productive (growth associated) part 
and total of the specific respiration activity and 2COY  is 

biomass yield per unit of respired CO2. If the kinetic 
respiration analysis is performed shortly after soil 
sampling, the initial physiological state (0<r0<1) 
characterizes relative microbial activity in situ. 

For numerical reasons it historically has been easier 
to fit Eq. 1 to the data and calculate microbial 
parameters in a second step. Current statistical software, 
however, can easily and directly fit models of complex 
formulations. Hence, we recommend representing the 
model in the form of eq. 5 and fit this equation to the 
data. In this way the estimated coefficients and also the 
estimated uncertainties directly refer to the microbial 
parameters of interest.  

    maxmax max

2 2

1 1
1 1 t

o o o o
CO CO

p t x r x r e
Y Y

 
 

     
 

 (5) 

Equation 5 is effectively a three parameter equation 
when accepting the following assumptions. First, 
 may be accepted as a basic stoichiometric constant of 
0.9 during unlimited growth (Akimenko et al. 1983). 
And second  2 1COY Y Y   can be assumed to be the 

constant 1.5 during the experiment ( 
Blagodatsky et al. ).  A more advanced 
statistical treatment that accounts for 
the uncertainty of those two parameters 
would slightly increase the confidence 
range of the microbial parameters of 
interest. The derivation of Eq. 5 is 
summarized in Appendix A. 
 

Soils samples and respiration 
measurement 

We used 121 data sets of respiration 
time series of 44 different soil samples 
taken from field plots (upper 10 cm) to 
test several methods of confining the 
experimental growth phase. The first 
part of the soil sample data consisted of 
16 samples of the same soil (Cambisol, 
sandy loam, from FAL, Braunschweig, 
Germany field experiment, 
(Blagodatsky et al. 2006)), which 
differed in the rate of soil fertilization, 
the type of grown agricultural crop, and 

Table 1: Soil characteristics and field descriptions for subset FACE. 

Soil type, 
texture, 
location 

Crop Sampling site N, 
kg N ha-
1 year-1 

СО2,in 
atmosphere 

ppm 

Sample 
No 

C
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rhizosphere 126 
350 1 

550 2 

root-free soil 63 
350 3 

550 4 

rhizosphere 63 
350 5 

550 6 

root-free soil 126 
350 7 

550 8 

W
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w
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rhizosphere 
126 

350 9 

root-free soil 350 10 

rhizosphere 
63 

350 11 

root-free soil 350 12 

rhizosphere 
126 

550 13 

root-free soil 550 14 

rhizosphere 
63 

550 15 

root-free soil 550 16 
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the concentration of atmospheric CO2 at which these 
crops were grown (Table 1).  
The second part of the soil sample data consisted of 28 
samples from FAL and Pushchino. It originated from 
laboratory experiments on four different soils with 
varying levels of mineral N and P applied to the soil 
during determination of the respiration response (Table 
2). All soil samples were sieved (<5 mm) at day of 
sampling and stored field-fresh in aerated polyethylene 
bags usually for 1-3 days at 4 оС (maximum 2 weeks). 
Before measurements of the substrate induced 
respiration kinetics the soil moisture content was 
adjusted to 50% of the water holding capacity (WHC), 
and then the soil was preincubated at 22 оС for 24 h. 

Ten grams (dry weight) of soil were amended with 
a mixture containing glucose (10 mg g-1), talcum (20 
mg g-1), and mineral salts (standard mixture consists of 
(NH4)2SO4, 1.9 mg g-1; K2HPO4, 2.25 mg g-1; 
MgSO4*7H2O, 3.8 mg g -1). For the second part of data, 
some soil samples were amended with smaller amount 
of N or P as shown in Table 2. After substrate addition, 
the soil samples were placed in triplicate into an 
ADC2250 24- Multichannel Soil Respiration System 
(ADC Bioscientific Ltd, Great Amwell, UK), which 

consisted of 24 plastic tubes, to measure CO2 
production rate at 22°C. Each sample was continuously 
aerated (300 ml min-1), and the evolved CO2 was 
measured every hour using an infrared detector and a 
mass flow meter (Heinemeyer et al. 1989). Air-flow 
rate, CO2 concentration and standard error of CO2 
measurements were continuously monitored.  

Model fitting 

Each of the 121 respiration rate time series has been 
first truncated to exclude the records after the maximum 
of the initial growth phase. Next, for each truncated 
time series, a series of subsets of data were constructed 
where the last 0 to n records were omitted. For each of 
these subsets a slightly modified version of (eq. 1) was 
fitted by non-linear regression (eq. 6).  

  2

1
l

ol ie t
i iv t e e

      (6) 

Variables 0 and 2 were replaced by exp( 0l ) and 

exp( 2l ) respectively, where 0l and 2l  are the natural 

logarithm of the corresponding variable. By this 
variable transformation, we ensured that the parameters 
at original scale and their 95% confidence intervals are 

Table 2: Soil characteristics and description of applied treatments for sample subsets FAL and Pushchino. Standard 
deviations are in parentheses. 

Soil type, 
texture, 
location 

pH 
(KCl) 

Total C 
(%) 

Total N 
(%) 

Management Amendments 
(mg·g-1 soil) 

Sample 
No 

 
Cambisol, 

Sandy loam, 
FAL 

 
5.8 

 
1.11 
(0.05) 

 
0.102 
(0.006) 

 
Arable, since 33 yrs no N; since 12 yrs no 

fertiliser 

No nutrients 17 

0.4 N 18 

0.4 P 19 

0.8 N; 0.4 P 20 

0.4 N; 0.4 P 21 

0.2 N; 0.4 P 22 

0.133 N; 0.4 P 23 

 
Cambisol, 

Sandy loam, 
FAL 

5.6 
2.54 
(0.05) 

0.221 
(0.002) 

 
Grassland, 300 m3 ha-1 sewage sludge (1980-

1990), until 1992 45 kg min N twice per yr 
since 10 yrs no treatment; 2x mowing per yr; 

cuttings not removed 

No nutrients 24 

0.4 N 25 

0.4 P 26 

0.8 N; 0.4 P 27 

0.4 N; 0.4 P 28 

0.2 N; 0.4 P 29 

0.133 N; 0.4 P 30 

 
Luvisol, 

Loamy silt, 
Pushchino 

4.6 
1.5 

(0.035) 
0.126 
(0.001) 

 
Arable, no fertiliser since 7 yrs 

No nutrients 31 

0.4 N 32 

0.4 P 33 

0.8 N; 0.4 P 34 

0.4 N; 0.4 P 35 

0.2 N; 0.4 P 36 

0.133 N; 0.4 P 37 

 
Luvisol, 

Loamy silt, 
Pushchino 

4.2 
1.67 
(0.01) 

0.151 
(0.002) 

 
Grassland, turned from arable to meadow 22 yrs 

ago; no fertiliser since 22 yrs; 2x mowing per 
yr and cuttings harvested 

No nutrients 38 

0.4 N 39 

0.4 P 40 

0.8 N; 0.4 P 41 

0.4 N; 0.4 P 42 

0.2 N; 0.4 P 43 

0.133 N; 0.4 P 44 
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always positive. i is the standard deviation of the 
measurement error. In order to account for the fact that 
higher respiration rates were measured with a higher 
uncertainty, we used the following variance model ( 7).  

 ( )i isd v t


   (7) 

The expected standard deviation ( )isd  increases with 

the model prediction  itv . The coefficient   was 
estimated by the model fit in the gnls function (Pinheiro 
and Bates 2000), and the coefficient  has been set to 
0.5, 0.6, and 0.5 for the FACE, FAL, and Pushchino 
subsets (Table 1) of the data, respectively.  A value of 0 
corresponds to unchanging absolute errors, 1 to 
unchanging relative errors, and intermediate values 
correspond to increasing absolute errors or decreasing 
relative errors. We will elaborate on the choice of   in 
more detail in the discussion section. 

Model fitting was done using the gnls function of 
the nlme package version 3.1-96 of the free statistical 
software R version 2.10.1. The starting values for each 
fit were determined by a linear regression of ln(p(t)-
0.99*min(p(t)) against time t, where p(t) is the 
respiration rate measured at time t.  

Standard errors and confidence bounds of the 
microbial parameters were obtained by fitting a slight 
modification of equation 5 directly to the respiration 
using the gnls function. The modification was a variable 
transformation to represent our prior knowledge that 
initial biomass, specific growth rate are strictly positive 
and the initial activity ratio is bounded between zero 
and one (eq. 8).  

   
max max

max

2 2

1 1
1 ( ) 1 ( )

l l
l

ol olx x e t
ol ol

CO CO

e e
p t e s r e s r e

Y Y


 

 
     
 

 (8) 

We replaced x0 and max by exp(x0l) and 

maxexp( )l respectively, and we replaced r0 by s(r0l), 

where s is the inverse of the logit function 

  0 0log / 1r r . The transformed parameters x0l, max l ,  

and r0l are estimated within an unbounded domain. The 
back-transformations to the original scale ensured 

proper bounds and proper confidence intervals for the 
microbial parameters. 

The necessary starting values were obtained by 
applying equation 2 to 4 to the estimates of fitting 
equation 6 to the respiration data. 

Rules of comparing residual plots to confine 
the unlimited growth phase 

In order to identify a subset of the data within the 
unlimited growth phase, we compared several fits on 
subsets of the original data that differ by the number of 
included records (n). 

If the subset of data included records where growth 
conditions were actually limited, the time course of the 
respiration rate diverged from simulated exponential 
increase (see Figure 1, n=30). This effect is often 
identified more clearly by plotting the log of the 
respiration minus the estimated respiration at time zero, 
i.e. beta0 (Fig. 2, n=30).  

Plotting the standardized residuals (differences 
between model fits and measurements divided by the 
corresponding standard errors) revealed a distinct shape 
resembling the letter V in the subsets that include 
records out of the unlimited growth phase (Fig. 3). This 
deviation from a random distribution indicated a 
significant positive autocorrelation in the residuals. 

Excluding additional records from the end time of 
the dataset, the V-shape gradually disappeared. With 
the example of Fig. 3 with n=25 records, residuals were 
scattered around without a distinct pattern. Hence, the 
assumption of independence of the residuals was valid 
for this subset and the applied model (eq. 6) 
successfully described the time course of the 
respiration. We selected the subset that includes the 
most records out of the sets where the assumption of 
independent residuals has not been violated. This can be 
formalized as selecting the number of records n of the 
first plot in the sequence where the pattern in residuals 
disappeared. The influence of limitations during the 
growth cycle starts gradually. Hence the choice of the 
dataset when this pattern disappeared is not strict and 
still a bit subjective. Therefore we strived to find 

n=30
mu=(0.187,0.214)
r2w=0.997
Q=0.53188

n=29
mu=(0.199,0.224)
r2w=0.9975
Q=0.53683

n=28
mu=(0.211,0.235)
r2w=0.9979
Q=0.54027

n=27
mu=(0.226,0.245)
r2w=0.9987
Q=0.54106

n=26
mu=(0.242,0.254)
r2w=0.9994
Q=0.67145

n=25
mu=(0.25,0.261)
r2w=0.9996
Q=0.56971

n=24
mu=(0.252,0.264)
r2w=0.9995
Q=0.54269

n=23
mu=(0.25,0.264)
r2w=0.9993
Q=0.54772

Time 1.9 to 30.9 hour (Experiment 3_2)
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Figure 2: Same as Fig. 1 with y-axis is at log-scale. Coefficient beta0 is the respiration rate at the time zero directly
after the amendment. beta0 is estimated during model fit and slightly changes between figure panels. 
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statistical criteria to identify the unlimited growth 
phase. 
Statistical criteria to confine the unlimited 
growth phase 

The model fits to subsets of the respiration time 
series differing by the number of included records n can 
be also compared by statistical criteria. We 
benchmarked several criteria by comparing them to the 
result of applying the rules of comparing residual plots 
to the 121 respiration time series. 

 
I. Maximum value of r2 and Q-value 

The first measure that we tested was the coefficient of 
determination, denoted r2 (eq. 9) (Quinn and Keough 
2002). 

 

 

2

2

( )
2 1

i
regerr i

tot tot i
i

v t v
SSSS

r
SS SS v v


   






 (9) 

where r2 is the coefficient of determination, SSerr is the 
residual sum of squares, SStot is the total sum of 
squares, SSreg is the regression sum of squares, v(t) is 
the respiration rate predicted by the fitted model for 

time ti, v is the mean respiration rate across all i, and vi 
is the observed respiration rate. 

The coefficient of determination has two useful 
properties: it decreases with the exclusion of records 
from the data set, and it decreases with inclusion of 
records that are far apart from the model prediction, i.e. 
outside the exponential growth phase. Hence, we 
expected the dataset with the maximum number of 

points in the exponential growth phase to result in the 
maximum r2. 
In order to account for the varying measurement 
uncertainties, we additionally calculated a weighted 
version of the coefficient of determination denoted r2w 
according to eq. 10. 

 

 

2 2

2 2

( ) ( )
2

( )

i i
i

i i
i

v t v sd
r w

v v sd

















 (10) 

where )( isd  is the expected standard deviation 
according to equation 7. 

A similar measure of goodness of fit is the sum of 
weighted residuals (eq. 11).  

 2

2
2

( )

( )
i i

i i

v t v

sd 


   (11) 

where v(ti) and vi are the model prediction and the 
observed respiration respectively at time ti and 

)( isd  the estimated standard deviation of observation i 
(eq. 7). The measure Q is the probability of obtaining 
the statistics X2 (eq. 11) in a Chi-square distribution 
with the number of degrees of freedom equal to the 
number of data values minus the number of adjusted 
parameters, i.e. three in this case. Q corresponds to the 
probability that the differences between the model and 
the data has occurred by chance. Similar to r2, Q is 
expected to have maximum values at the dataset with 
the maximum number of points in the exponential 
growth phase. 
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Figure 3: Plot series of the residuals of Figure 1. n: number of records in the subset of the data. For this example
the statistical criteria tell that there is no significant auto-correlation starting from panel n=26. From visual
inspection of the V-shaped patterns, however, we decide that unlimited growth phase extends only until n=25
records. p.1: probability of autocorrelation according to the Breusch-Godfrey test for the entire series of residuals,
p.2: same as p.1 but applying the test only for the subset of residuals excluding the records before the minimum of
respiration., p.3: same as p.2: but additionally excluding the last residual in the test statistics, p.n: probability of the
Durbin Watson test for negative autocorrelation.  
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II. Absence of autocorrelation between residuals  
Deviations from unlimited growth will result in patterns 
in the residuals.  If there was a distinctive pattern in the 
residuals, then testing for autocorrelation in residuals is 
probably significant. If there was no distinctive pattern, 
the tests for autocorrelation have higher probability of 
obtaining non-significant results. 

The Durbin-Watson statistic tests for first-order 
autocorrelation in the residuals from a regression 
analysis (Durbin and Watson 1951). The function 
dwtest in the free R software provides probabilities for 
positive or negative autocorrelation based on this 
statistics. 

The Breusch-Godfrey test (Breusch 1978) also tests 
for autocorrelation in the residuals but is considered to 
be more general and more powerful than the Durbin-
Watson test. The function bgtest of the free R software 
provides probabilities for serial autocorrelation for the 
Breusch-Godfrey test.  

We used these probabilities of the tests to choose a 
subset of the data with the following rules.  
1) The fit to the data set has no significant auto-
correlation on the 5% rejection level. 
2) The fit to the dataset including one more point has 
significant autocorrelation at the 5% rejection level. 
3) If there are several cases that fulfill rules 1 and 2, 
select the case that includes the most records. 

We found that these tests detected more 
autocorrelations in the respiration data than that was 
obvious in the residual plots when applied to all the 
residuals. Hence, we present the results of applying the 
tests to subsets of the residuals. The first subset 
includes all residuals (denoted dwtestfull and 
bgtestfull). The second subset omits all the residuals 
before the minimum of respiration and excludes the 
very first records that are prone to measurement errors 
(denoted dwtest and bgtest). Further we found that the 
last observation had a large influence on the test 
statistics. Hence, the third subset additionally excluded 
the last observation (denoted dwtest1 and bgtest1). 

 
III. Combined criteria 

Because each of the basic criteria identified incorrect 
number of records in unlimited growth phase results for 
a few respiration series, we further refined and 
experimented with several combinations of the basic 
criteria. Here we present one combined criterion that 
was quite successful and at the same time not too 
complicated. We denote it cortest. The combined 
criterion works on the following rules 
1) Choose the dataset identified by bgtest1 rules 
2) If there is a dataset with negative autocorrelation 
according to a dwtest that includes more records then 
the dataset identified by 1 then choose this one.  

This combined criterion improved the bgtest1 
decision in the cases where there was a negative 
autocorrelations by chance.  

The second combined criterion, here denoted as 
r2wComb, took account for deviations between several 
criteria. When both the r2 criterion and the cortest 

criterion identified a dataset that deviated by more than 
one point from the dataset identified by the r2w 
criterion, the criterion r2wComb did not give a number 
of points but was undecided (NA, not a value).  

Results and discussion 

Confining the experimental growth phase 

Series of plots of model fits at original and log 
scale (Figs. 1, 2) and the series of model residuals plots 
(Fig. 3) greatly aided the identification of the records 
within the unlimited growth phase. We applied the rules 
of comparing residual plots (section 2.4) to the 121 
respiration datasets. In 8 datasets, there were inherent 
autocorrelations that may have arisen from 
measurement errors that were correlated with time, 
making the rules of comparing residual plots 
unsuccessful. In those cases, the V-pattern did not 
disappear with exclusion of additional records (Fig. 4). 
So we selected a subset of unlimited growth by 
inspecting the series of fits at original and log scale. 

The importance of properly confining the unlimited 
growth phase as demonstrated in Fig. 1 was confirmed 
by a sensitivity analysis across the 121 time series of 
microbial growth respiration (Appendix B). The 
specific growth rate max was significantly biased 
downwards and the initial activity r0 was highly 
sensitive to including records after the unlimited growth 
phase. 

When benchmarking several statistical criteria to 
confine the growth phase, the r2w criterion performed 
best among the non-combined criteria. It successfully 
identified the unlimited growth phase in all time series 
where nutrients were not limiting (104 of 121)  
(Table 3).  

 

Table 3: Frequency of matches and mismatches 
between the number of records in subsets of unlimited 
growth data identified by several statistical criteria 
compared to the number of records identified by rules 
of comparing residual plots across n=121 datasets.  

 

Crit. Undecided < -1 > +1 Matches Failure rate

Correlation measures 

r2 0 31 3 87 28% 
r2w 0 1 6 114 6% 
Q 0 56 35 30 75% 

Patterns in residuals 

dwtestfull 23 30 1 67 26% 
dwtest 11 29 1 80 25% 

dwtest1 10 28 10 73 31% 
bgtestfull 6 13 15 87 23% 

bgtest 4 13 17 87 25% 
bgtest1 3 14 17 87 26% 

Combined measures 

cortest 3 14 17 87 26% 
r2wComb 15 0 2 104 2% 
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Robust criteria confining the experimental 
growth phase 

The weighted r2 is a simple statistical criterion to 
constrain the unlimited growth phase. However, we 
further studied whether the criteria can distinguish the 
situations where the restrictions for unlimited growth 
are violated. If a criterion does not give unreasonable 
results in those cases we call it robust. An example test 
case was the FAL arable sandy soil that was incubated 
with incomplete nutrient amendment.  As a result the 
r2w criterion sometimes provided incorrect conclusions 
(time series of samples 24, 26, and 29). This was 
because of to deviations from unlimited growth due to 
shortage of nutrients instead of carbon substrate. We 

experimented with several methods of automated 
detection of these problematic cases. In most of the 
unsuccessful cases, the r2w criterion diverged from 
both the r2 and the cortest criterion by more than one 
record. The check on this divergence was formalized 
with the combined r2wComb criterion, which identified 
almost all problematic cases.  There were only two of 
the 121 series (time series 28_2 and 37_2) where the 
r2wComb criterion provided approximation instead of 
indentifying the problems of double limitation. 

In both series, consistent deviations of the 
respiration from the growth model in the middle of the 
growth phase hampered the test for correlations (Fig. 
5). Such consistent deviations can arise due to 

 
Figure 4: Example plot series of standardized residuals where the inspection of residual pattern was not applicable.

 

 
Figure 5: Example plot series of model fits where the r2wComb criterion was not successful. The rules of
comparing residual patterns suggested the series of 36 records, the r2wComb suggested 40 records. The best
estimates of microbial parameters, though, did not significantly differ between the two subsets of the data. 
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equipment error. However, the microbial parameters 
based on an improperly defined growth phase did not 
significantly differ from the ones based on visually 
confining the growth phase.  

In summary, the r2w criterion was applicable for 
confining the experimental growth phase in 
experiments with complete nutrient amendment. For 
low nutrient studies, the more complex combined 
r2wComb criterion was able to detect the problematic 
cases where further inspection is necessary. We 
conclude that the r2wComp criterion represents a robust 
way, how to statistically constrain the unlimited growth 
phase.  

Uncertainty of respiration measurements 

In addition to the experimental growth phase, the 
estimates of microbial parameters depend on the prior 
information about measurement uncertainty. Ordinary 
least squares parameter estimation assumes that 
measurement errors are independent and identically 
distributed. However, this assumption is often not met 
with respiration measurements. The uncertainty of the 
respiration measurements usually increases with the 
magnitude of the respiration. The usage of generalized 

linear models allows the magnitude of the variance of 
each measurement to be a function of its predicted 
value (Quinn and Keough 2002). Hence, we modelled 
the variation of the residuals by equation 7. The 
parameter  was assumed to be dependent only on the 
measurement setup and was assumed not to change 
between datasets measured with the same device and 
setup.  

The number of records in the unlimited growth 
phase and the estimated microbial parameters was 
sensitive to the choice of the magnitude of increase of 
measurement uncertainty with the magnitude of the 
respiration. For example, in Fig. 6, the 95% confidence 
interval of specific growth rate estimated at δ=0.5 does 
not include the best estimate at δ=0.3. However, 
assuming δ within the range of 0.4 to 0.8 does not 
introduce significant bias. 

One might be tempted to estimate the uncertainty of 
the measurements by the distribution of measurement 
errors across replicates. However, the differences 
between replicates are only in part caused by 
measurement errors but are in a big part caused by 
variation in initial biomass x0 and physiological state r0. 
Even with totally precise measurements of respiration, 
the observed respiration would differ because of 
differences of microbial biomass across replicates.  
Hence, estimating the measurement uncertainty from 
differences across respiration observations of several 
replicates would lead to an overestimation of 
measurement uncertainty, especially in the later stages 
of growth.  

In the best case, measurement uncertainty has been 
determined by a calibration of the measurement setup 
against a known flux of carbon dioxide. However, such 
information is rarely available. The identification of δ 
from the data is an unsolved problem. In this study we 
eventually included parameter δ as a free parameter in 
model fits to each experiment and used the median of 
the results across all the experiments.   

For modern Model-data synthesis reporting of 
uncertainties of estimated parameters is as essential as 
reporting the best estimates (Raupach et al. 2005). The 
modifications of the model fitting process suggested in 
section 2.1 proved very useful for estimating parameter 
uncertainty. In accordance with (Hess and Schmidt 
1995) we suggest to use respiration rates instead of 
cumulated respiration. Next, by directly fitting eq. 5 
that includes microbial parameters allowed the 
numerical algorithms to infer parameter uncertainty. 
Further, the parameter transformations of eq. 8 yielded 
asymmetric confidence bounds for microbial 
parameters, ensuring valid ranges. This procedure 
corresponds to assuming a log-normal distribution for 

0x  ,and max , which is reasonable for strictly positive 

variables (Jaynes and Bretthorst 2003, Tarantola 2005). 
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Figure 6: Comparison of microbial parameter estimates
across varying assumption of increasing measurement
uncertainty for respiration time series 2.1. X-labels
denote δ parameter for equation 7. Points denote best
estimates and arrows denote 95% confidence interval
after identifying the unlimited growth dataset and fitting
microbial parameters. 
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Biased measurements at the beginning of the 
growth phase 

Several methods of measuring respiration from soil 
give imprecise measurements after disturbing the soil 
sample at the beginning of the experiment. With gas 
analyzers (Heinemeyer et al. 1989), the flow has to 
equilibrate throughout the tubing system. With the 
Respicond method (Nordgren 1988), temperature has to 
be restored. Hence, it is necessary to discard the 
imprecise measurements at the beginning before the 
fitting procedure. In the example of figure 7 the decline 
of respiration rates within the first 4 hours does not 
correspond to the assumption of unlimited growth of 
microbes. Omitting the first 4 observations from the 
kinetic respiration analysis changed the estimates of 
initial (time=0) microbial biomass and initial activity 
ratio.  

Number and spacing of respiration measure-
ments  

The required precision of microbial parameters 
eventually determines the required number of 
measurements. From a statistical perspective, the fitting 
method requires at least 6 records. This is because there 
are 6 parameters to estimate, the three microbial 
parameters, the two parameter of residual uncertainty, 
and the time (or number of records) within the 
unlimited growth phase. More important than the 
number of measurements, however, is that the 
measurements are well dispersed across the time of 
unlimited growth. We demonstrate this issue using the 
example from the introduction (Fig. 8). We repeated the 
kinetic analysis for several subsets of the time series. 
Using only 6 records equally spaced across the growth 
phase, the confidence intervals of microbial parameters 

were only inflated by a factor of about 2 and included 
the best estimate that was based on all 30 records. In 
contrast, when using all 15 measurements of the first or 
second half respectively, the confidence intervals were 
inflated much more. 

In the case, when there are too few measurements, 
the uncertainty bounds will indicate this. For example 
Fig. 9 displays an example of strong N limitation where 
the kinetic respiration analysis formally works, 
however, essentially does not add much information 
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Figure 8: Comparison of microbial parameter estimates
across varying scenarios of subsets of the respiration time
series 3_2. full: dataset with 30 records (Fig. 1), disp: 6
dispersed records (1  7 13 19 25 30), first: first 15 records,
second: last 15 records. Points denote best estimates and
arrows denote 95% confidence interval. 
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about microbial parameters. In this case it would be 
misleading to just report best estimates without 
reporting the uncertainty bounds.  

Conclusions 
The kinetic respiration analysis is currently the only 

method of soil microbial biomass estimation that allows 
the estimation of the active part of total biomass.  The 
synthesis of results of the method, however, has been 
hampered by differences in statistical treatment of the 
resulting data, which is discussed in this study. 

One precondition of the method is unlimited 
growth and the dataset has to be confined to this initial 
phase, i.e. the lag phase and the exponential growth 
phase. The estimates of the microbial kinetic 
parameters are sensitive to differences in this process of 
confining the unlimited growth phase. The process is 
inherently vague because the onset of deviation from 
unlimited growth due to the influence of a limitation 
appears to be gradual. Still, the scientific community 
should aim to establish a common procedure of 
confining the unlimited growth phase to allow 
comparison and synthesis of the estimates between 
studies. We propose rules of comparing residual plots 
that are based on the disappearance of a pattern in the 
residuals in a series of fits. Inclusion of records outside 
the unlimited growth phase introduces larger deviations 
than exclusion of records inside the unlimited growth 
phase. Hence, excluding records is the more 
conservative choice.  

From the tested statistical criteria, the simple r2w 
criterion (the weighted coefficient of determination) is 
applicable for confining the experimental growth phase 
in experiments with complete nutrient amendment. The 
more complex r2wComb criterion can in addition detect 
problematic cases. It is only necessary, if the researcher 
wants to automate the analysis of many time series and 
a wants to have a guide for finding those series, e.g. 
from low nutrient studies, where further inspection is 
necessary. This study confirms the importance of 
experimental precautions. Nitrogen and Phosphorus 
limitation should be avoided in using kinetic respiration 
analysis for the purpose estimating microbial biomass 
and its activity state. 

The estimates of microbial parameters are sensitive 
to the specification of measurement uncertainty. This 
uncertainty is overestimated when inspecting the 
variance in respiration across replicates and neglecting 
the differences in initial conditions between replicates. 
The robust estimation of uncertainty parameters from 
the data itself is subject to further research.  

The estimates of microbial parameters are also 
sensitive to the number and timing of the respiration 
measurements across the phase of unlimited growth and 
introduce a bias in the initial measurements due to 
experimental conditions. It is important that the 
measurements are well dispersed across the time period 
of unlimited growth. The case of only too few 
measurements will be reflected in the uncertainty 
bounds of microbial estimates. We strongly recommend 

always reporting those bounds together with the 
estimates. 

We provide the tools of using the freely available R 
software to fit the kinetic respiration analysis model to 
the data and to constrain the unlimited growth phase as 
an R-package. The most critical statistical issues are 
under control and they should not hamper the 
application of the kinetic respiration analysis.  

Appendix A: Derivation of the kinetic 
model 
Here we present the derivation of model equation 5. 
The kinetic respiration analysis is based on the dynamic 
synthetic chemostat model (SCM) (Panikov 1995). This 
model describes the activity of microbial biomass by 
the physiological state r.  Variable r is defined as the 
ratio between the instantaneous quantity of cell 
constituents absolutely necessary for growth (P-
components) and its total changeable part. The SCM 
assumes that a change in P-components is 
complemented by a reverse change in components 
needed for survival under restricted growth (U-
components), and that hence the amount of U-
components should be proportional to 1-r. It can be said 
that r indicates the ratio between active and sustaining 
biomass. 

When integrating the dynamic SCM model over a 
time t of unlimited growth the respiration rate p(t) 
follows equation 12 (Panikov and Sizova 1996,  

Blagodatsky et al. ). 
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 (12) 

where p(t) is the respiration rate at time t ,expressed as 
respired carbon per time, max is maximum specific 
growth rate, r0 is the initial physiological state,  x0 is the 
initial biomass, Q and Q’ are maximum substrate 
uptake rates for coupled and uncoupled respiration 
respectively. The part Y, termed biomass yield, of the 
uptake for coupled respiration is incorporated into 
biomass, i.e., is associated with growth, and part (1-Y) 
is respired. The uncoupled part Q’ is not coupled with 
growth and is completely respired. It can be 
approximated by measuring cyanide-resistant 
respiration. Variable  1TQ Y Q Q    is the total 

specific respiration.  With  2 1COY Y Y   and 

 T TQ Q Q   , Equation 5 above is a direct 

reformulation of eq. 12. 

Appendix B: Sensitivity of growth 
parameters to biases in confining the 
unlimited growth phase 
Do differences in confining the unlimited growth phase 
cause improper estimates of microbial parameters? This 
question can be answered by a sensitivity analysis. For 
each of the 121 datasets where we identified an 



 12 

unlimited growth phase, 
we compared resulting 
microbial parameters using 
different subsets 7 of the 
respiration data. The first 
subset corresponded to the 
subset defined by the rules 
of comparing residual 
plots to microbial 
parameters.  The other six 
subsets included either up 
to three more records or 
omitted up to three records 
at the end of the unlimited 
growth phase.  

As a measure of the 
expected absolute and 
relative magnitude of the 
deviation, we calculated 
the mean, standard 
deviation, and mean of the 
absolute (i.e. positive) of 
the relative error. As a 
measure of expected bias, we calculated the mean of the 
relative differences. Significance of the bias was tested 
by a paired t-test. 

The sensitivity analysis showed significant bias of 
microbial parameters when constraining the unlimited 
growth phase in different ways. The specific growth 
rate max was significantly biased upwards when 
excluding records of the end of the unlimited growth 
phase and significantly biased downwards when 
including records after the unlimited growth phase 

(Table 4). The initial activity r0 was highly sensitive to 
inclusion of more records, as indicated by the relative 
errors. There was a strong significant overestimation 
when including records after the unlimited growth 
phase. For initial biomass x0 there was no clear 
direction of the deviations. Based on the magnitude of 
the relative errors we recommend that if one is in doubt 
about including a record within the unlimited growth 
phase, one should rather exclude it. 
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