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Generic biomass functions for Common beech (Fagus sylvatica L.) in 

Central Europe – predictions and components of uncertainty 

 

Abstract This study provides a comprehensive 

set of functions for predicting biomass for 

Common beech (Fagus sylvatica L.) in Central 

Europe for all major tree compartments. The 

equations are based on data of stem, branch, 

timber, brushwood (wood with diameter below 5 

or 7 cm), foliage, root and total above-ground 

biomass of 443 trees from 13 studies. We used 

non-linear mixed-effects models to assess the 

contribution of fixed effects (tree dimensions, site 

descriptors), random effects (grouping according 

to studies) and residual variance to the total 

variance and to obtain realistic estimates of 

uncertainty of biomass on aggregated level. 

Candidate models differed in their basic form, the 

description of the variance, and inclusion of 

various combinations of additional fixed and 

random effects and were compared by the AIC 

criterion. Model performance increased most 

when accounting for between-study-differences in 

the variability of biomass predictions. Further, 

performance increased with the inclusion of age, 

site index, and altitude as predictor variables. We 

show that neglecting variance partitioning and the 

fact that prediction errors of trees are not 

independent with respect to their predictor 

variables will lead to a significant underestimation 

of prediction variance. 

 

Keywords inventory, allometric equation, regression, 

mixed-effects models, upscaling, covariance, stem, 

branch, timber, foliage, root, brushwood 

Introduction 

The estimation of biomass at the tree-level and the 

subsequent step of scaling up biomass to the stand 

and eventually the regional level using forest 

inventory data is an essential component of 

monitoring carbon storage in forests (Kauppi et al. 

1992, Liski et al. 2006, Nabuurs et al. 2003). 

Advances in the quality and the efficiency of 

carbon monitoring will affect decisions on climate 

politics and energy politics (Raupach et al. 2005). 

Furthermore, accurate forest carbon stocks are 

important to validate models (Thurig and 

Schelhaas 2006, Vanclay and Skovsgaard 1997) 
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List of Symbols 

Symbol Unit Description 

symbols of tree measure and predictors 

m kg biomass 

d cm diameter at breast height (1.3m) 

h m tree height 

age yr tree age 

si m site index (mean height of trees at 

age 100 years) 

alt m altitude (height above sea level) 

dh  models with predictors diameter and 

height only 

dhc  models with additional covariates 

age, si, and alt 

statistical symbols 

i  group (study) 

j,k  individuals (trees) 

yij  target variable (biomass m) 

xij  vector of predictors. (d,h) 

ij   vector of covariates (age,si,alt) 

   vector of fixed effects 

bi  vector of random effects 

cs  coefficients c0, c1, and c2 of the basic 

model forms 

int  intercept (constant) 

   residual 

2   variance or first coefficient of the 

variance model 

   second coefficient of the variance 

model 
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and for validating spatial extrapolations based on 

remote sensing (Lu 2006). The basis for the 

assessment of forest carbon stocks are biomass 

equations. These equations relate variables that are 

commonly measured during forest inventories, 

such as tree diameter at breast height, to dry mass 

of biomass compartments. They may be applied 

directly at the tree level, or as a component of 

biomass expansion factors, which operate on 

aggregated data at the stand-level (Jalkanen et al. 

2005, Wirth et al. 2004a). 

There are numerous studies on biomass 

equations of different species for different regions 

(Jenkins et al. 2003, Marklund 1987, Zianis et al. 

2005) and also several studies for common beech  

(Table 1) (Hochbichler 2002, Hochbichler et al. 

1994, Lebaube et al. 2000, Zianis and Mencuccini 

2003, 2005). With the exception of Burger 

(1949/50) and Joosten et al. (2004) the biomass 

equations presented in these studies are limited 

with respect to the number of trees (median 20 

trees, minimum 7 and maximum 38 trees), the size 

range of the sample trees, and the extent of the 

study area (mostly single stands or catchments). 

None of these studies is sufficiently representative 

for a nationwide monitoring of forest carbon 

stocks and covers a large enough environmental 

gradients to be applicable to such a large and 

diverse area as Central Europe. Furthermore, none 

of the above studies provides the statistical 

background information to allow a straightforward 

variance estimation of stand- and regional level 

biomass (for other species see Phillips et al. 2000, 

Wirth et al. 2004b). Nor, can this information be 

provided by meta-analysis-studies that are based 

on published equations instead of tree 

measurements (Muukkonen 2007, Zianis and 

Mencuccini 2003). However, uncertainties of 

biomass predictions are as important as the 

predictions themselves (e.g. Raupach et al. 2005). 

And finally, most studies only report data and 

equations for a subset of the biomass 

compartments. Compartments considered usually 

include the economically relevant above-ground 

woody compartments (timber, stem), less often 

branches and leaves and rarely belowground 

compartments. However, monitoring and 

modelling changes of carbon stocks requires the 

estimation of all the biomass compartments.   

In our study we compiled available biomass 

data for Common beech (Fagus sylvatica L.) and 

developed generic biomass equations applicable 

for a broad range of sites and situations and for all 

major biomass compartments. In addition, we 

provide tools for a realistic estimation of 

uncertainties of biomass predictions that account 

for the heterogeneity of the underlying data. We 

used non-linear mixed-effects models in order to 

make inference on variance components. We 

outline how functions of biomass and functions of 

prediction variance were developed and how they 

can be used to estimate variances and confidence 

intervals for individual tree predictions as well as 

for estimates of biomass stocks on aggregated-

level, e.g. stands, from forest inventory data. 

While the aggregation of stand-level predictions 

and uncertainties to the regional level involves 

further steps, our generic equations for the wide-

spread Common beech – covering 15% of the 

forest area in Germany – will serve as an 

important component in an improved national 

carbon monitoring.     
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Figure 1: Map showing the location of study sites. 

The plot labels correspond to the studies listed in 

Table 1. The size of the symbols increases with the 

number of trees sampled at the location. 
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Figure 2: Schemes of different definitions of above 

ground woody biomass compartments. Scheme A 

separates between stem and branch wood with the 

assumption that the main stem can be clearly identified 

all the way to the top.  Scheme B which is less 

subjective and most commonly applied in forest 

sciences separates between timber and brushwood 

based on a fixed diameter threshold (usually 5 or 7 

cm). 
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Methods 

Data 

We collected biomass of tree compartments from 

sample trees of Common beech originating from 

13 studies (Table 1), which cover the extent of 

Central Europe quite well (Fig. 1). The tree-level 

entries included biomass m of a tree compartment 

(kg) and as predictor variables the diameter at 

breast height d (cm), the tree height h (m), and the 

Table 1: Methods used and compartments sampled by 13 studies to determine tree biomass of Common beech.  

ID Study nTreea nPlot Coun

try
b
 

Compart

-ments
c
 

Altitude 

[m] 

Site 

Index 

[m] 

Vari-

ables
d
 

Comments 

BAR (Bartelink 1997) 38 6 NL agr,st,br,l  23 34 - 

36 

sr,cl,cp  

BUR (Burger 1949) 91 18 SZ bw,l 480 - 

1360 

24.5 

- 36 

sr br included thin 

stem parts and was 

not considered here 

CIE (Cienciala et al. 

2006) 

20 4 EZ agr,st,br 450 - 

750 

24 - 

28 

cl,cp  

DU1 (Duvigneaud et al. 

1971) 

7 1 BE agr,st,br,t

,bw 

330  26   reconstructed tree 

heights 

DU2 (Duvigneaud et al. 

1977) 

13 1 BE agr,st,br 250 - 

250 

24  cl  

HEI (Krauß and 

Heinsdorf 1996) 

14 3 GM agr,st,br,l 42  28.5 

- 30 

 also quantified 

bark 

HEL (Heller and 

Göttsche 1986) 

29 3 GM agr,t,bw,

r 

500  22.5 

- 24 

sr r only for 4 trees 

JO (Joosten et al. 

2004) 

116 28 GM agr,t,bw 30 - 

500 

18 - 

45.5 

  

LGO (Le Goff et al. 

2004) 

23 2 FR agr,st,br,l

,r 

300 36  sr,cl r only for a subset 

MAS Masci, A. pers. 

comm. within 

project FORCAST 

(Schulze et al. 

2003) 

28 1 IT agr,st,br,l

,r 

1560  18  sr,cl,cd r only for a subset 

MAT Matteucci, G. pers. 

comm. within 

project FORCAST 

(Schulze et al. 

2003) 

30 3 GM agr,st,br,l 440 - 

450 

32 - 

35 

 l only for a subset 

PEL (Pellinen 1986) 19 5 GM agr,t,bw,l

,r 

420 29 - 

30.5 

sr r only for a subset, 

age uncertain 

VYS (Vyskot 1990) 15 1 EZ agr,st,br,l

,r 

505  36  sr,cl,cd

,cp 

also quantified 

twigs and stump, 

provides further 

data on root 

 Total 443 76 7  23 - 

1560 

18 - 

45.5 

  

a
 nTree = number of sample trees considered; nPlot = number of plots where trees have been samples;  

b
 NL = Netherlands, SZ = Switzerland, EZ = Czech Republik, BE = Belgium, GM = Germany, FR = France, IT = Italy  

c
 agr = above ground wood; st = stem including bark; br = branches; t = timber (agr with diameter > 7cm); bw = brushwood (agr 

with diameter < 7cm); l = leaves, r = roots 
d
 in addition to diameter at breast height, tree height, age, site index and altitude: sr = social rank, cl = crown length, cd = crown 

diameter, cp = crown projection 
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tree age age (yr). Stand-level predictors are the 

site index si (mean height of trees at age 100 years 

in m) and the altitude alt (height above sea level in 

m).  

The biomass compartments considered are 

foliage (leaves), coarse roots (root) and above-

ground woody biomass (agr). Due to the weak 

apical dominance of Common beech there is a 

gradual transition between stem and branch wood, 

which renders the separation into these two 

compartments ambiguous (Fig. 2). In this study 

we report functions for both schemes and thus for 

all four compartments: brushwood, timber, stem, 

and branches. The number of sample trees and the 

range of predictor values differed between 

compartments (Table 2). 

Basic model forms 

We used three basic model forms as starting 

points of our model selection. First, the simplest 

allometric equation for predicting the biomass of a 

tree compartment m is a function of its diameter at 

breast height d (eq. 1). It can be shown that the 

functional form of a power function arises from 

the assumption that the ratio of the relative growth 

rates of mass and diameter (here m and d) is 

constant (Wenk et al. 1990). Second, to improve 

the predictive power this basic allometric equation 

is often extended to include the tree height h as an 

additional predictor. Eq. 2 still can be viewed as 

allometric equation that relates biomass to the 

volume of a cylinder defined by d and h (Cienciala 

et al. 2006, Wirth et al. 2004b). Third, a multiple 

allometric equation for predicting the biomass of a 

tree compartment as a multiplicative function of d 

and h is given by eq. 3 (Widlowski et al. 2003). 

[1]  1
0

c
dcm   (d2) 

[2]    12
0

c
hdcm   (dh2)  

[3] 21
0

cc
hdcm   (dh3)  

Here m  is the biomass of a tree compartment for 

a sample tree, d  is the diameter at breast height 

(cm), h is the tree height (m), cs, i.e. c0..c2, are 

model coefficients to be estimated. The number at 

the end of the equation labels (d2, dh2, dh3) 

indicates the number of parameters.  

Rational of using nonlinear mixed-
effects models  

We used non-linear mixed-effects models 

(Lindstrom and Bates 1990) to directly fit the 

candidate models to the data. The main advantage 

of using mixed-effects models lies in their 

capability to account for groupings in  residual 

variance due to random effects (Pinheiro and 

Bates 2000). In our case, the grouping variable is 

the study from which the data originate. The mere 

fact that sample trees from one study usually share 

a common provenance and were collected in the 

same environment by the same team of scientists 

with a specific set of methods often causes their 

residuals to be consistently lower or higher than 

the mean predictions of a fixed effects model. This 

violates a fundamental assumption of independent 

residuals in conventional regression analysis 

(Crawley 2002), and will lead to an 

underestimation of variance. Mixed-effect models 

are one way to adequately address this type of data 

heterogeneity. Instead of assuming the same fixed 

effects across all groups (eq. 4a), mixed models 

allow the coefficients sc of the model (eq. 1..3) to 

vary between groups by adding a group dependent 

random effect (eq. 4b). Additionally, they allow to 

include covariates that in part explain the 

deviation from generic coefficient value s  (eq. 

4c). 

[4a] ssc   

[4b] isss bc ,   

[4c] 
altsialtage

altsiagebc

altsisaltages

altssisagesisss





.,.,

,,,,




 

,where s and   ars cov, are fixed effects, isb ,  is 

the study dependent random effect, age, site index 

(si), and altitude (alt) are covariates.  

For a single level of grouping to studies, the 

tree compartment biomass mij of the tree j from 

the i
th
 study can be expressed as the target by a 

Table 2: Number of sample trees and range of predictors by tree compartments. 

Compartment nTree nStudy Dbh (cm) Height (m) Age (yr) Site Index (m) Altitude (m) 

agr 350 12 1 - 79 2 - 37 8 - 173 18 - 46 23 - 1560 

stem 187 9 2 - 79 3 - 37 8 - 165 18 - 36 23 - 1560 

branches 175 8 2 - 64 3 - 37 8 - 165 18 - 36 23 - 1560 

timber 170 4 1 - 79 2 - 35 18 - 173 18 - 46 30 - 500 

brushwood 276 6 1 - 79 2 - 40 14 - 173 18 - 46 30 - 1360 

root 48 5 3 - 38 7 - 29 21 - 160 18 - 36 300 - 1560 

leaves 247 8 1 - 62 3 - 40 8 - 165 18 - 36 23 - 1560 
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single level mixed-effects model (eq. 5) 

(Lindstrom and Bates 1990)  

[5]   ijiijijijij bxfym   ,;,   

  ,0~ Nbi , and ),0(~ 2 Nij  

where, f is a general, real-valued, differentiable 

function (one of eq. 1..3, with coefficients 

expressed as eq. 4c) of a vector of predictors, 

ijx (d, h), a covariate vector ij (age, si, alt), the 

vector of fixed effects  , and study dependent 

vector of random effects ib  (Pinheiro and Bates 

2000). In this study we used an unconstrained 

symmetric positive definite covariance matrix 

 of random effects. We used extended mixed-

effects models, where the assumption of the 

within-group residuals εi =(εi1, …,εin ) is relaxed by 

),0(~ 2

ii N  , and where i are positive-

definite matrices parameterized by a set of 

parameters δi. Typically the variance of the 

residuals j  increases with compartment biomass 

jm  for tree j at the original scale. We thus 

explicitly modeled the variance of the residuals by 

a power function (eq. 6). 

[6]   


2

22 ,;)( jjj mgVar     

Not only the coefficients but also the residual 

variance may potentially vary between studies. 

We accounted for this by modifying the model of 

residual variance (eq. 6) to eq. 7 by replacing the 

single exponent  by the group-dependent 

exponent i . 

[7]   i

ijiijij mmgVar



2

22 ,;)(     

for the i
th
 study and the j

th
 observation. The 

parameters 
2 and i  were estimated by 

iteratively re-weighted sum of squares 

simultaneously with the other coefficients in the 

model fitting algorithm. 

We used non-linear models (Lindstrom and 

Bates 1990) for the following reasons. For model 

fitting the biometric data are often log-

transformed to linearize the allometric equation 

and to homogenize the variance, which otherwise 

increases with size on the original scale 

(Baskerville 1972). However, the back-

transformation of the predicted value to the 

original scale introduces biases in the expected 

values and the uncertainties (Smith 1993). The 

proper dealing with these biases introduces new 

assumptions and the simple nonparametric 

correction using the smearing estimate  (Duan 

1983, Taylor 1986), as it is frequently employed 

(e.g. Joosten et al. 2004), is not directly applicable 

if mixed-effects models are used (Wirth et al. 

2004b). In addition, the logarithmic form does not 

allow to include the covariances between 

predictions errors at the original scale when 

calculating the variance of a biomass prediction 

errors for several trees (eq. A2.1). In Appendix A2 

we show how the variance of new predictions can 

be propagated to aggregated levels.  

Fixed effects models partition the variance 

around the mean prediction into the variance 

arising from uncertainty in the parameter 

estimates and into residual variance. In mixed-

effects models a further component is added: the 

variance that is induced by the random effects, 

which represents groupings in the data (eq. A1.2) 

In our case the random effect accounts for all 

implicit differences between sites, provenances 

and methods etc. associated with the sample 

material and sites of different studies that are not 

represented by any specific predictors. Besides the 

grouping of variances according to studies there is 

potentially also a grouping according to stands. In 

addition to the presented results we tried to fit 

two-level mixed models to account for this 

additional grouping level. However, the highly 

unbalanced design of the data, i.e. several studies 

include only one stand, and the differences in 

variances of random effects between the studies 

caused problems in the numerical algorithm to fit 

the two-level mixed model and we concluded that 

the available data was not sufficient to account for 

groupings at both the stand- and the study-level at 

the same time. Diagnostic graphs of stand level 

random effects and study level random effects 

showed that groupings according to studies were 

much more pronounced than groupings according 

to stands. In the presented approach the stand-

level differences are partly accounted for by the 

study random effect. This approach can be seen as 

a pooling of the comparatively similar stands of 

each study in order to obtain enough within-group 

cases. 

It shall be noted that the equations for the 

different compartments are based on different 

subsets of the whole dataset. Hence, we separately 

fitted the models for the different biomass 

compartments and the derived biomass equations 

are not additive (Lambert et al. 2005, Parresol 

2001).  

Definition of the candidate model set 

In order to find an appropriate model, we 

compared 246 models for each biomass 

compartment by the Akaike information criterion 

(AIC) (Akaike 1987). Figure 3 summarizes the 
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different dimension of constructing the candidate 

model set.  

First, we tested which coefficients ( sc ) 

differed randomly by study. We fitted the models 

(eqs. 1..3) with all 8 combinations of random 

effects (either eq. 4a or eq. 4b) for the model 

coefficients and compared model performance by 

AIC. The non-linear fixed or mixed-effects model 

after this step is called the „best dh-model‟. In 

some cases with random effects in three or two 

coefficients the model fitting algorithm did not 

converge. We excluded these cases from the 

candidate model set. 

Second, we included covariates in the model 

coefficients (eq. 4c). To reduce the number of 

possible combinations and to avoid overly 

complex models we constructed our candidate 

models according to the following three rules: (1) 

Higher-order polynomial terms for any of the 

covariates were avoided because such models are 

difficult to extrapolate. (2) A covariate effect was 

added to a coefficient sc  only if the same 

covariate effect was not already associated with 

another coefficient. This was done because 

including covariates on correlated coefficients 

caused unrealistically high counteracting effects 

(e.g. c0 strongly increases with age while c2 

decreases with age). (3) Covariates were added to 

either c1 or c2 , in the dh3 model form (eq. 3) 

because diameter and height were highly 

correlated and the AIC hardly changed when the 

covariate was included in either one of the two 

coefficients. If the dh-model with random effects 

in c0 and c2 resulted in a better AIC than the dh-

model with random effects in c0 and c1, we 

selected c2 else c1. In total, this led to 41 

combinations of the terms in eq. 4 across the three 

coefficients. Finally, the resulting best model, 

which included the random effects from the first 

step, was compared to the models with covariates 

but with fewer random effects. We call the 

resulting best model after this step the „best dhc-

model‟.  

Third, we assessed if including a study 

dependent formulation of the residual variance 

increased model performance by replacing eq. 6 

by eq. 7.  

The model fitting was done using the nlme 

and the gnls functions using a general positive-

definite variance-covariance matrix using 

Maximum Likelihood (ML) method for model 

selection. The resulting best models were refitted 

using the REML method to improve estimates for 

the variance components. We used R-nlme library 

version 3.1-66 (Pinheiro and Bates 2000). 

Calculation of Confidence intervals 

We computed symmetrical 95% confidence 

intervals around single tree biomass predictions 

with width )(96.1295 newcf mVarw  . The 

variances of the predictions were computed by eq. 

A1.2 and the residual variance component 

)( newVar   was determined by eq. A1.5. A 

numerical example for the tree-level calculation is 

given in Appendix A3.  

At aggregated level the 95% confidence 

intervals around the biomass predictions were 

calculated with the same equation as for the tree 

level. However, the variance of the prediction 

error of the sum of the biomass of several trees 

has to include covariances between the single tree-

level predictions errors (eq. A2.1 and eq. A2.3). 

The covariance between predictions errors of two 

trees explicitly depends on the predictors and 

covariates of the two trees (eq. A2.2). All 

calculations were programmed with the statistical 

software R
1
. The calculation of variance at the 

stand level was exemplified
2
 using data of an 

inventory of a chronosequence of shelterwood 

beech forests in Thuringia, Germany (Mund 

2004)
3
.  

Cross validation and comparison to 
previously published biomass 
functions 

The validity of the presented model and its 

performance in comparison to published studies is 

demonstrated using cross validation (Davison and 

Hinkley 1997).  This was done by comparing the 

predictive performance of a range of published 

                                                      
1 www.r-project.org. The programmed R-model objects, 

including variance-covariance matrices, derivative 
functions, and additional functions to apply prediction 
and uncertainty calculation at tree and stand level are 
provided as supplementary material S5 

2 R-code is provided with electronic supplementary 
material S6. 

3 Details of the inventory are provided with electronic 
supplementary material S1. 

 d2,dh2,dh3: basic model forms (eqs. 1..3) 

 ran: inclusion of study random effects in 

model coefficients ( isss bbb ,int,  ) 

 c: inclusion of covariates in model 

coefficients (eq. 4)  

 ranres: inclusion of a study effect in the 

residual model (eq. 7 instead of eq. 6) 

Figure 3 Dimensions of the candidate model set. 

 

 

http://www.r-project.org/
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functions with the results of the cross-validation 

of our generic functions.  In the cross validation 

the observations that were used for validation 

were not used to fit the model,  i.e. the biomass of 

a tree from a given study was predicted with our 

generic model, but the  parameterization of the 

respective model was based only on the data of all 

other published studies. For each model we 

calculated the root mean squared error (RMSE) 

with the modification of applying a weighted 

mean. The weights were the inverse of the square 

root of the expected variance according to eq. 

A1.5. 

Results 

Comparison of the models without 
additional covariates 

The three-parameter model dh3 (eq. 3) fitted the 

data best for most compartments (see Table 3 for 

the example of stem biomass
4
). Only for the stem 

and timber biomass, the dh2-model (eq. 2) and for 

the root biomass the d2-model (eq. 1) showed 

similar or better performance. In all cases, the 

inclusion of parameters that allow the variance to 

differ between studies (eq. 7) resulted in the 

largest improvement of model performance. In 

comparison, the mere inclusion of random 

components into the model coefficients improved 

the model performance only slightly for the 

compartments stem, branches, roots, and leaves. 

However, it did not improve the model 

performance at all for the compartments above-

ground wood and timber. The coefficients of the 

best dh-models are listed in Table 4. 

                                                      
4 For other compartments see electronic supplementary 

material S2 

Effect of additional covariates 

The inclusion of the additional covariates age, site 

index, or altitude improved the model 

performance in all cases (see Table 3 for the 

example of stem biomass
5
). The highest 

improvement was achieved for the compartments 

above ground wood, branches, brushwood, and 

leaves (Fig 4; compare neighboring graphs). The 

coefficients of the best dhc-models are listed in 

Table 5. We will come back to the magnitude and 

sign of individual coefficients and their 

interpretation in the Discussion section.    

Variance of predictions  

The estimated parameters that are needed to 

calculate the residual variance (eq. A1.5) are listed 

in Table 6. The standard deviations of the random 

effects with the dhc-models in Table 6 were 

smaller compared to the ones of the corresponding 

dh-models. This indicates that a large part of the 

variance that was previously accounted for in the 

random effects component was now accounted for 

by the covariates. 

The 95% confidence intervals of several single 

tree biomass predictions by the best dh-models 

(Table 4) and dhc-models (Table 5) are shown in 

Fig. 4. In all cases, the width of the confidence 

intervals strongly increased with the size of 

predicted biomass. This represented the increasing 

variability in the observed biomass that was 

modelled with a power model (eq. 6 or 7 

respectively). The amount of prediction variance 

differed considerably between the different 

compartments. The confidence intervals for above 

ground wood biomass and timber are 

comparatively narrow (both have a coefficient of 

variation cv = 12% for tree age of about 70 years). 

However, confidence intervals of single tree 

biomass predictions of branches, root, and leaves 

are very wide (cv = 59%, 35%, and 49% 

respectively). The inclusion of additional 

covariates in the models resulted in narrower 

confidence intervals in most cases (compare 

neighbouring graphs in Fig. 4). However, the 

confidence intervals for branches and leaves were 

still comparatively wide (cv = 45% and 43%). 

Inclusion of additional covariates also accounted 

for a large part of the variance that, before, in the 

dh-models was attributed to unknown random 

effects between the studies (see background bars 

in Fig. 4).  

                                                      
5 For other compartments see electronic supplementary 

material S2 

Table 3: Comparison of the model forms and 

inclusion of random components by AIC for stem.  

Kind of Model AIC degrees of freedom 

dh3_c_ran_ranres 1507.3 17 

dh2_c_ranres 1509.0 16 

dh2_ran_ranres 1512.8 15 

dh3_ranres 1538.3 13 

dh3_c_ran 1567.2 9 

dh3_ran 1571.3 8 

dh2_c 1596.5 7 

dh2 1623.6 4 

 dh3,dh2,d2: basic model forms (equations 2..4), c: 

covariates included, 
c 

ran: random effects included, 
 

ranres: model of residuals includes study dependence.
 

results of the other compartments are given in 

electronic supplement S2 (Fig. 3) 
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The biomass equations were developed at tree 

level. However many applications make inference 

at the aggregated level, e.g. stands, by taking the 

sum of predicted biomass of all trees. At the stand 

level, the confidence intervals were much 

narrower (Fig. 5) (cv = 2.5%, 2.9% for above 

ground wood and timber) compared to the 

corresponding confidence intervals at the tree 

Table 4: Regression coefficients (βi) and their standard errors in brackets of the best models of diameter 

and height (dh-models, eq. 1..3, with coefficients as in eq. 4b). 

Compartmenta Form β0 β1 β2 

agr dh3 ranres 0.0523 (0.00330) 2.12 (0.0225) 0.655 (0.0394) 

stem dh2 ran_ranres 0.0293 (0.00406) 0.974 (0.0163)  

branches dh3 ran_ranres 0.123 (0.0296) 3.09 (0.107) -1.17 (0.175) 

timber dh3 ranres 0.00775 (0.00125) 2.11 (0.0406) 1.21 (0.0841) 

brushwood dh3 ran_ranres 0.466 (0.0862) 1.85 (0.100) -0.349 (0.150) 

root d2 ran_ranres 0.0282 (0.00263) 2.39 (0.0467)  

leaves dh3 ran_ranres 0.0377 (0.00686) 2.43 (0.0817) -0.913 (0.120) 

a 
This table is also available with electronic supplementary S2.

 
Empty cells denote the term to be not included    

 

Table 5: Regression coefficients and their standard errors for the models that include additional 

covariates (dhc-models, eq. 1..3, with coefficients as in eq. 4c). 
 

Compartment agr stem branches timber brushwood root leaves 

Form dh3 dh3 dh3 dh2 dh3 d2 dh3 

 ran_ranres ran_ranres ran_ranres ran_ranres ranres ranres ranres 

β0 0.0551 
(0.00463) 

0.00351 
(0.00704) 

0.122 (0.0294) 
0.0106 

(9.43E-04) 
0.805 (0.159) 

0.0292 
(0.00225) 

0.0561 (0.00882) 

β1 2.11 (0.0242) 1.84 (0.0333) 3.09 (0.106) 1.08 (0.00795) 1.83 (0.113) 1.70 (0.0792) 2.07 (0.0770) 

β2 0.589 (0.0427) 1.04 (0.0548) -0.151 (0.304)  -0.560 (0.149)  -1.09 (0.112) 

βs,age s=2: 4.06E-04 
(1.07E-04) 

s=0: 3.47E-05 
(2.43E-05) 

  
s=1: 0.00134 

(3.03E-04) 
s=0: 4.36E-05 

(1.65E-05) 
 

βs,si s=0: 2.39E-04 
(8.15E-05) 

s=0: 6.72E-04 
(2.38E-04) 

s=2: -0.0309 
(0.00783) 

  
s=1: 0.0209 
(0.00387) 

s=1: 0.0137  
(0.00192) 

βs,alt s=0:-4.68E-06 
(1.39E-06) 

s=0: 8.11E-06 
(2.77E-06) 

s=2:-9.87E-04 
(2.58E-04) 

s=0:-1.54E-06 
(5.84E-07) 

s=1:-1.68E-04 
(5.26E-05) 

s=1: 7.43E-04 
(1.72E-04) 

s=0: -3.29E-06  
(3.62E-06) 

βs,si.alt 
  

s=2: 3.06E-05 
(1.08E-05) 

  
s=1:-2.70E-05 

(8.55E-06) 
 

a, 
see Table 4,

 
see appendix A3 for an example of constructing the full equation. 

 

Table 6: Uncertainty coefficients of the best models.  

 Compartmenta Form ζ² b Mean(δi)
 c Var(δi) sd(b0,i)

 d sd(b1,i) sd(b2,i) 

d
h

-m
o
d

el
s 

agr dh3 0.166 0.770 0.00965       

stem dh2 0.0708 0.873 0.0177 3.47E-07 0.0176   

branches dh3 0.249 0.863 0.0274     0.132 

timber dh3 1.29 0.614 0.0104       

brushwood dh3 0.149 0.979 0.00448   0.0811   

root d2 0.0432 0.902 0.118   0.0660   

leaves dh3 0.179 0.854 0.117 0.00882     

d
h

c-
m

o
d

el
s 

agr dh3 0.142 0.782 0.00912       

stem dh3 0.0903 0.842 0.0196 0.00316     

branches dh3 0.250 0.860 0.0260     0.0690 

timber dh2 1.29 0.615 0.00779       

brushwood dh3 0.191 0.935 0.00434   0.0661   

root d2 0.0410 0.874 0.185       

leaves dh3 0.174 0.858 0.121       
a seeTable 4; The estimated covariance matrices of the fixed and the random effects are provided with electronic supplementary S4 

in csv format, bζ: base variance   cδi: power of variance for study i, dsd(bs,i): estimated standard deviation of the random coefficients 
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Figure 4 Tree-level predictions and 95% confidence intervals of the best dh-models (left) and dhc-models (right) 

for each biomass compartment, respectively. The bars in back represent the proportions of the different variance 

components (residual, random effects and fixed effects variance). The predictors site index and altitude were kept 

constant (si = 30m, alt = 470m). The predictors height and age were chosen to be consistent with the site index and 

the diameter. 
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Figure 5: Predictions and 95% confidence intervals of the best dh-models on the left and the best dhc-models on 

the right for biomass predictions at the stand level for 5 stands of a shelterwood chronosequence. The bars in back 

represent the proportions of the different variance components as in Fig. 4.   
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level (Fig.4). The effect of wider confidence 

intervals for higher biomass predictions was still 

present, but not as pronounced as with the single 

tree biomass predictions. The relative contribution 

of model residuals to total variance was much 

smaller (background bars in Fig. 5). The decrease 

in total variance upon inclusion of covariates was 

much stronger than at the tree-level (cv = 

34%20%, 18%8%, and 20%10% for 

branches, root, and leaves, respectively, at stand 

age 69 years).  

The different model forms are compared 

exemplarily for stem biomass at tree level in Fig. 

6. The predictions were very similar for average 

covariate values. However, the variability between 

studies added uncertainty to the biomass 

prediction. The mixed-effects dh-model accounted 

for these differences by random effects, which 

resulted in a wider confidence band. The mixed-

effects dhc-model explained these differences in 

part by additional covariates and the width of the 

confidence band was smaller than without 

covariates. The fixed effects model neglected the 

inter-group variability and underestimated the 

variance. Hence, the confidence band for the dh-

fixed effects model was too narrow. However, this 

underestimation of variance due to ignoring 

differences between studies was small compared 

to ignoring covariances between single tree 

prediction errors at stand scale (Fig. 7). 

Cross Validation 

The advantages of generic models of the dh- and 

dhc-type can be evaluated by comparison with 

other published beech biomass functions for 

Central Europe that are based on far smaller data 

sets. The stem biomass predictions of the cross 

validation of the dh-models (including only 

diameter and height as predictors) were very 

similar to the predictions of the previously 

published equations by Ciencala et al. (2006) and 

Bartelink (1997) across the range of sizes (Fig. 

8a). For our generic functions, the inclusion of 

additional covariates in the dhc-model improved 

the model fit slightly (weighted RMSE decreased 

from 21 to 18 kg). For foliage biomass, however, 

the larger dataset and the inclusion of covariates 

led to a more pronounced improvement of the 

model fit and a reduction of estimated biomass 

(Fig. 8b) in comparison to the predictions 

according to Bartelink (1997) and Le Goff and 

Ottorini (2001). 

Discussion 

Our study provides the first comprehensive set of 

functions for predicting biomass for Common 

beech in Central Europe for all major tree 

compartments. Combining original tree biomass 

data from many sites across Central Europe, 

which varied in climate and soil characteristics, it 

was possible to develop generic equations that are 

representative for the great majority of beech sites 

in the study region. However, the obvious 

advantages of combining data from various 

sources comes at the cost of data heterogeneity, 

which can only be appropriately dealt with by 

using non-standard statistical methods (Bates and 

Watts 1988, Wirth et al. 2004b). We used non-

linear mixed-effects models (Pinheiro and Bates 

2000) that have been successfully applied in 

forestry studies for trunk circumference 

(Lindstrom and Bates 1990), tree height (Calama 

and Montero 2004, Calegario et al. 2005, Fang 

and Bailey 2001, Hall and Bailey 2001), stand and 

bole volume (Fang et al. 2001, Gregoire and 

Schabenberger 1996, Zhao et al. 2005), yield (Hall 

0 20 40 60 80

0

1000

2000

3000

4000

5000

Diameter [cm]

S
te

m
 [

k
g
]

Fixed Effects

+Random Effects

+Covariates

 

Figure 6: 95% confidence intervals of stem biomass 

for different forms of modelling variation between 

groups. Predictors site index and altitude were given 

intermediate values (si = 30m, alt = 470m). The 

predictors age, diameter and height were chosen to 

represent typical values for these conditions from the 

dataset of sample trees.  
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Figure 7 95% confidence bands of stem biomass at 

stands of the Geney beech forest chronosequence. 

None of the displayed model results used additional 

covariates. 
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and Clutter 2004), and biomass (Wirth et al. 

2004b). Using non-linear mixed models allowed 

us to propagate different sources of variance and 

to analyse the structure of variance when scaling 

up from tree-level to aggregated level. 

Our study illustrates the continuum between 

fixed and random effects models. When we 

compare models with and without additional 

covariates (dh and dhc-models),  the contribution 

of the random effects to the total variance was 

much smaller in the dhc-models than in the dh-

models (Figures 4 and 5). The effects of the 

covariates were formerly accounted for in part by 

the random effects in the dh-models. This finding 

corroborates the finding of Fang et al. (2001), 

where the inclusion of the predictor dominant 

height accounted for the differences between 

stands, that were formerly accounted for by 

random effects. The effect of covariates was less 

pronounced for the biomass compartments branch, 

brushwood, and stem biomass (Fig. 4). We 

hypothesize, that this is in part caused by the 

subjectivity involved in the separation of the stem 

and branch compartment and that thus there are 

inherently large differences between studies that 

are not due to environmental conditions but 

unknown differences in sampling protocols of 

different teams. This is confirmed by the fact that 

the random effects almost disappear for the sum of 

the two compartments (above ground woody 

biomass). In this context it is important to realize 

that the inclusion of covariates is only possible if 

– as in our case – data from many stands covering 

a range of ages and site conditions are pooled.  

We generally observed that the random effect 

of the variable ‘study’ was small for biomass of 

stem, timber and above ground wood (Tables 4 

and 5). This indicates that study-specific effects 

are relatively small compared to the dominating 

effect of the predictors diameter and height. 

Hence, the predictions of stem biomass did not 

vary much when we compared equations from 

different studies (Fig. 8a).  However, we observed 

that models accounting for grouping effects in the 

residual variance performed better (eq. 7, Table 

3). This implies that although the mean prediction 

was similar, the estimated variance of the biomass 

did vary between studies. The data, which were 

used in our study, do not allow us to distinguish 

whether this was an effect of differences in the 

sampling scheme between the studies, or a real 

effect of differences in growth variability between 

the studies. For other tree compartments, the 

random effects associated with the study were 

larger. Hence, for a specific new inventory, the 

biomass predictions will be more strongly biased 

towards the mean across studies. If a few 

additional biomass measurements for the new 

inventory are available it is possible to estimate 

the specific values of the random effects (e.g. 

Nothdurft et al. 2006). However, in most 

applications additional measurements of tree 

biomass compartments are too expensive. Lappi 

(1991) provides methods to estimate the values of 

the random effects of linear mixed-effects models 

for volume equations by related equations that 

require only diameter and height measurements. 

To develop similar related equations for the non-

linear tree biomass equations presented here is 

beyond the scope of this paper and warrants 

further study.   
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Figure 8 Predictions of the models fitted in the cross validation of  a) stem and b) leaves biomass and comparison 

to previously published biomass functions. 
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Applying biomass functions from a single 

study outside the reference area will inevitable 

ignore the site influence on biomass allocation 

patterns (see discussion below) and will also 

underestimate variance (Fig. 6). This is, because 

the biomass function does not account for the 

differences between the studies, neither implicitly 

by random effects nor explicitly by covariates. 

In the statistical analysis we assumed that the 

measurement error of the predictors does not 

have a profound effect on the estimation of the 

model coefficients (Table 5). Diameter, height, 

stand age, and altitude have been measured with 

high precision at the considered studies. For the 

covariate site index, which was in some cases 

estimated by age and height, we performed a 

Monte Carlo study for the above ground biomass 

where we varied the site index randomly with a 

standard deviation of ±1m and re-fitted the best 

dhc-model. The additional uncertainty introduced 

in the estimates of the model coefficients ranged 

only from 3%  to 24% of the standard errors in 

Table 5 for the for coefficients β1 and β0.si 

respectively.  Hence, we conclude that the 

uncertainty in predictor site index has a 

sufficiently small effect on the results and does 

not change our interpretations. 

Although certainly not all features of the 

models can be readily interpreted, some obvious 

biologically plausible patterns emerged that can 

be related to well-known allocation patterns thus 

increasing our confidence in the model 

predictions. 

The three parameter model fitted the data of 

most biomass compartments best (Table 3). The 

better performance of the dh-models showed that 

the parameter tree height is an important 

additional predictor of biomass as observed in 

other studies for beech (Cienciala et al. 2006, 

Joosten et al. 2004, Zianis and Mencuccini 2003) 

as well  as in studies of other species (Cienciala et 

al. 2006, Montagu et al. 2005). However, tree 

height did not significantly influence root 

biomass, as indicated by the best performance of 

the d2 model form (eq. 1). This corresponds to 

findings for Norway Spruce (Wirth et al. 2004b).  

The parameter β2 associated with the predictor 

tree height was negative for all crown 

compartments. This means, that (at a given 

diameter) higher trees tended to have a lower 

biomass of crown compartments. We think that 

this is most likely due to the fact that individuals 

with a high h/d-ratio tend to be suppressed trees 

with an elevated allocation to stem growth at the 

expense of allocation to crown biomass (Nilsson 

and Albrektson 1993, Vanninen et al. 1996, Wirth 

et al. 2004b). Negative values of β2 have also been 

observed in a similar study on Norway spruce 

(Wirth et al. 2004b)     

At a given diameter and height stem biomass 

increased with stand age in the best dhc-model. 

This may be related to a negative correlation 

between wood density and ring width (Bouriaud et 

al. 2004). At a given diameter and height older 

trees have more and thus smaller tree rings. This 

implies a higher wood density and hence higher 

biomass. The fact that the best model included 

also the site index and altitude as covariates with 

positive coefficients suggests additional 

environmental modulation of wood density that 

warrants further investigation.  

Biomass equations are usually applied to make 

inferences at the aggregated level. For up-scaling, 

the sum of the biomass predictions of many single 

trees, e.g. within one stand, is calculated. When 

calculating the variance of the sum, prediction 

errors of the single trees are usually regarded as 

independent of each other for simplicity sake. 

Instead, our statistical approach accounts for 

covariances between prediction errors for several 

trees. The residuals of different trees are still 

considered independent. However, biomass 

predictions based on uncertain model coefficients 

deviate from the prediction that would result if the 

true (but unkown) model coefficients were used. 

The deviations of the predictions have the same 

direction for similar predictor values and therefore 

have a positive covariance (for a more formal 

description see Appendix A2). This issue is 

independent of using fixed-effects models, single-

level random-effects models or multi-level mixed 

effects models. We showed how much the 

variance of biomass predictions at the aggregated 

level is underestimated when covariances between 

single tree-prediction errors are neglected (Fig. 7). 

This was already shown by exploring different 

assumptions about the covariances (Lehtonen et 

al. 2007, Lehtonen et al. 2004), however we 

provide the approach to actually quantify the 

covariances.  

Further, we demonstrated that the reduction of 

variance upon scaling from tree level to 

aggregated level depends on the partitioning of 

variance. When differences between studies were 

represented explicitly by additional covariates 

instead of random effects, the relative contribution 

of fixed and random effects to total variance on 

tree level decreased (Fig. 4 background bars). 

Because of the linear scaling of the residual 

variance with the number of trees, the coefficient 

of variation (cv) of the predicted biomass at the 

stand level decreases with the square root of the 

number of trees if trees are regarded independent. 
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However, variance attributed to the uncertainty of 

fixed and random effects scale in a quadratic 

manner with the number of trees (Appendix A2), 

these partitions of variance became much more 

important at aggregated level. Hence, the 

decreased contribution of fixed and random 

variance at tree level with the inclusion of 

additional covariates led to a large decrease of 

total variance at aggregated level (Fig. 5 

background bars). This finding highlights the 

importance to factor out variance components at 

the original, i.e. not log-transformed, scale. 

Conclusions 

This study presents generic biomass equations of 

seven biomass compartments for beech trees in 

Central Europe. A meta-analysis of biomass 

measurements of 443 trees of 76 sites from 13 

studies across Central Europe enabled the 

assessment of the effect of the covariates age, site 

index, and altitude on tree biomass. Further, our 

study illustrates for the first time the importance 

of separating variance components (residual, 

fixed, random) in the context of scaling up 

uncertainties from tree to the aggregated level. 

 Leaves and branch biomass prediction varied 

considerably across Central European studies. 

Using our large dataset for calibration 

improved model performance most for these 

compartments in comparison to previously 

published functions. Stem and above ground 

biomass did not vary this much, but still model 

performance slightly improved. 

 In addition to mean predictions, also the 

variability of tree biomass differed between 

studies in Central Europe. Biomass functions 

based on a data set of a single study, did not 

account for the implicit differences between 

studies. Hence, using these functions outside 

the calibration area underestimates the variance 

of the prediction error for new biomass 

predictions. 

 The covariates age, site index, and altitude 

modulated the effect of diameter and height. 

These additional variables accounted for a 

large part of the differences in biomass 

predictions between studies, which were 

otherwise accounted for by the random effects. 

Hence, the inclusion of these covariates 

increased model performance for several 

biomass compartments and reduced prediction 

variance. 

 The predictions errors of trees are correlated, 

because of uncertain model coefficients. 

Neglecting these correlations when scaling up 

biomass to aggregated level underestimates 

prediction variance significantly. We 

developed equations and tools to quantify the 

covariances between single tree prediction 

errors as well as for up-scaling. 
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Appendix A1: Variance of single predictions 

The prediction newy


 for a predictor vector xnew, covariates 
new  and an unknown group was done by 

applying the model formula to the vector of new predictors assuming zero random effects (expected 

value) and zero residual term.  

In order to estimate the variance of the error of the non-linear prediction, we approximated the non-linear 

function f in equation 1 by its first order Taylor expansion in the parameter space around the estimated 

parameters  ̂  and 0ˆ newb   (eq. A1.1) (Gregoire and Schabenberger 1996).   
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 are vectors of partial 

derivates evaluated at the estimated parameters ̂ , 0ˆ newb , and the values of predictors and covariate 

for the new observation. 

Equation A1.1 describes the prediction that uses the true parameters  , and newb by a prediction that 

uses the modified parameters ̂  and 0ˆ newb  plus some deviation depending on the model parameters 

and the predictors. With this approximation the variance of the error of a non-linear prediction evaluates 

to eq. A1.2. 
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Estimates for the unknown true covariance matrices  ̂Var  and  as well for the residual variance 
2  

are obtained as a by-product of the numerical optimization algorithm used for REML estimation of the 

unknown parameters. The three terms of eq. A1.2 correspond to three components of variance, first the 

fixed effects, second the random effects, and third the residual variance. 

To account for variance heterogeneity within groups, we modeled the residual variance as a power 

function of the predicted values (eq. A1.3). 
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2

2
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If the coefficient δ of the power variance model additionally depended on the particular group ( i  ), 

the parameter δi for a new prediction was unknown because the group of the new prediction was 

unknown. The best estimate for the new prediction is the mean 
i

̂ of the estimate for parameters δi. 

However, the mean-function appears in a non-linear term and a correction factor has to be applied. The 

general form of the expected value of a non-linear eq.  xfy   obtained by the delta-method is eq. 

A1.4 (Hilborn and Mangel 1997 p.58). 
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This leads in the case of eq. A1.3 (   


2

2 yf  ) to eq. A1.5. 
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Appendix A2: Variance of the sum of predictions  
Many applications of statistical models calculate the sum of several individual predictions that originate 

from the same group (e.g. sum of biomass of individual trees measured by the same team with the same 

measurement procedure). The expected value of the sum of n predictions is simply the sum of the single 

expected values, i.e. model predictions. However, the variance of the sum of prediction errors has to 

account for covariances between the individuals. The variance of the sum of prediction errors is given by 

eq. A2.1 
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where  kkjj yyyyCov ˆ,ˆ   denotes the covariance between the errors of the individual prediction for 

the new observations j and k. 

In the following we derive the covariance between two prediction errors for predictions based on model 

of eq. 5 within the same group i. With approximating model eq. 5 by its first order Taylor expansion (eq. 

A1.1) around  ̂  and 0ˆ newb   we derive eq. A2.2. 
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where 1,newu , 2,newu , 1,neww , and 2,neww are vectors of partial derivates as explained with eq. A1.1. 

Estimates for the unknown true covariance matrices  ̂Var  and   are obtained as a by-product of the 

numerical optimization algorithm.  

If the two observations were of different groups, i.e. trees of different regions and measured by different 

teams, the covariance in prediction errors due to random effect would be zero, i.e. 

  0, 2,2,1,2, new
T
newnew

T
new bwbwCov . 

Now we are ready to calculate and interpret the variance of a sum of prediction errors of model eq. 5. 

Inserting eq. A2.2 into eq. A2.1 leads to eq. A2.3.  
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Similar to the variance of single predictions (eq. A1.2), eq. A2.3 is composed of the three terms of the 

components of variance (fixed, random, and residuals). However, the residual variance occurs in a 

simple sum over all individuals, whereas the fixed and random terms occur within a sum of sums. Hence 

the residual variance increases linearly with the number of individuals, whereas the random and fixed 

components of variance increase quadratically with the number of individuals.  

The covariance terms in eq. A2.3 can be negative. Hence, they potentially cancel out each other. 

However, individuals of the same group often have similar predictor values and have positive 

covariances. 
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Appendix A3: Application example 
In the following example, we demonstrate how to use the presented models and equations to calculate a 

new prediction for stem biomass and its confidence interval for a single tree with diameter (d = 18.8 cm), 

height (h =16.9 m) age (age = 40 years), site index (si = 30 m), and altitude (alt = 470 m). Consequently, 

we choose the dhc-model, because all the additional covariates are known. The label dh3 in table 5 

indicates that the basic model form is 21
0

cc
new hdcm   (eq. 3). Site index, age, and altitude affect the 

coefficient c0, and table 6 indicates that the model includes also random effect in c0: 

altsiagebc altsiagei  ,0,0,0,000   (eq. 4c). The other coefficients do neither include covariates 

nor a random effect. Hence the full equation of above ground biomass for tree j is given by eq. A3.1. 
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,0,0,0,00;,,,,
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Hence, with setting the random effect ib ,0  to its expected value 0 for a general prediction, the stem 

biomass computes to (0.00351 +0 +3.47E-05*40+6.72E-04*30 +8.11E-06*470) *18.8^1.84 *16.9^1.04 

= 121 kg. The variance of the prediction error is estimated according to eq. A1.2 and A1.5 as 
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Where f is given by eq. A3.1,  ̂Var  is the estimated 6x6 covariance matrix the estimated fixed effects, 

  is the 1x1 random effects covariance matrix
6
. The values of the coefficients of the third term are given 

in Table 6. A symmetric 95% confidence interval around the prediction is calculated using the quantile of 

the standard normal distribution as )ˆ(96.1 newmVar . This becomes 54.7 kg and the 95% confidence 

interval ranges from 68 kg to 177 kg. 

We provided R-objects
7
 of all the best models together with coefficients, gradient functions, the fixed 

and random effects covariance matrices and functions to calculate the variance of single tree biomass 

predictions (nlVar). The results of this example are simply obtained with the R-Command: 

“nlVar(dhcme.beech$stem, data.frame(dbh=18.8, height=16.9, age=40, si=30, 

alt=470), pred=TRUE)”. 

Similarly, for a group of trees the predicted biomass and the variance of the prediction error are simply 

obtained with the provided R-function nlCovar
8
. 

 

                                                      
6 Both matrices are made available with electronic supplementary material S4 

7 Electronic supplementary material S5 

8 An example of calculating biomass and prediction variance at stand level is in electronic suppl. material S6 


