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AABBSSTTRRAACCTT  

 
An improved quantitative understanding of the geographical distribution of CO2 

sources and sinks is indispensable in the context of ongoing climate change. Knowing 

the regional distribution of biosphere-atmosphere exchange is important for assessing 

potential feedbacks between climate and the carbon cycle. This is also crucial for 

implementing adequate emission reduction and sequestration strategies towards 

mitigating adverse effects of climate change. Measurements of atmospheric CO2 

concentrations contain information about CO2 exchanges between the surface and the 

atmosphere.This information can be quantitatively deduced from atmospheric 

measurements via inverse transport modeling on different spatial and temporal scales, 

using a priori information on the spatial and temporal distribution of surface-

atmosphere fluxes in a Bayesian framework. So far, mostly global inverse modeling 

tools together with global networks of observations, which have recently been 

augmented with tall tower observatories, have been used to estimate the source-sink 

distribution of CO2. However, these tall-tower-based measurements are often 

influenced by strong variability of the surface fluxes in the near-field (within a 20-

100 km radius of the observatories) and by mesoscale transport phenomena. These 

significant variations occur at scales that are not resolved by current global transport 

models, which have spatial scales of at most 1°×1°. These unresolved variations can 

introduce significant bias in flux estimates. Furthermore, fluxes in the near-field of 

the observatories are highly variable, calling for a-priori fluxes to be specified at high 

spatial resolution. This necessitates the development of high-resolution modelling 

frameworks. 

 
This thesis presents a mesoscale inversion technique which takes into account the 

spatial variability of CO2 at regional scales. A high-resolution modeling framework 

consisting of the models: the Weather Research Forecast (WRF; a weather prediction 

model), the Vegetation Photosynthesis and Respiration Model (VPRM; a diagnostic 

biosphere model), and the Stochastic Time-Inverted Lagrangian Transport model 

(STILT; a particle dispersion model) is set up to derive biosphere-atmosphere 

exchange at regional scales using airborne and ground-based measurements of CO2. 

Using high-resolution simulations, the representation errors (spatial scale mismatch 

between CO2 measurements and inverse models, i.e. the variability not resolved by
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global models) associated with the utilization of satellite measurements in current 

generation global models are estimated over Europe. The estimated representation 

errors are found to be above the targeted accuracy of the satellite retrievals. A linear 

model is formulated that could explain about 50 % of the spatial patterns in the 

systematic (bias or correlated error) component of representation error during day- 

and nighttime. These findings suggest a possible parameterization of representation 

error that allows for the provision of structural information on the representation error 

to inverse models or data assimilation systems. Chapter 3 focuses on these. 

 
Further, the ability of high-resolution modeling tools to simulate meteorological and 

CO2 fields at a mountain observatory − the Ochsenkopf tall tower in Germany − is 

assessed. This is essential in order to utilize measurements made in complex 

orography (e.g. mountain and coastal sites) in an atmospheric inverse framework to 

better estimate regional fluxes of these trace gases. The tower measurements made at 

different heights for different seasons together with data collected during an aircraft 

campaign in the vicinity of the tower are used for this purpose. The results suggest 

that the high-resolution models can capture diurnal, seasonal and synoptic variability 

of observed mixing ratios much better than coarse global models. The effects of 

mesoscale transports such as mountain-valley circulations and mountain-wave 

activities on atmospheric CO2 distributions are reproduced remarkably well in the 

high-resolution models. The study emphasizes the potential of using high-resolution 

models in the context of inverse modeling frameworks to utilize measurements 

provided from mountain or complex terrain sites. Chapter 4 addresses these. 

 
A quantitative comparison between atmospheric CO2 concentrations generated by the 

Eulerian based WRF and the Lagrangian based STILT models, while using identical 

surface-atmosphere fluxes and meteorological fields, is carried out in order to check 

the consistency of transport and turbulent mixing as represented by WRF and STILT. 

The inter-model differences are found to be small in most of the cases. A case study 

using airborne measurements during which both models showed larger deviations is 

analyzed in detail as an extreme case.  It is shown that a refinement of the 

parameterization of turbulent velocity variance and Lagrangian time-scale in STILT 

is likely needed when using meteorological fields with high spatial resolution. In 

general, the inter-model differences in simulated CO2 time series are estimated to be 

about a factor of two smaller than the model-data mismatch, which justifies using 
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STILT as an adjoint model of WRF but which at the same time indicates a 

requirement for further improvements when working at such high spatial resolutions. 

Chapter 5 focuses on these. 

 
A mesoscale inverse technique to derive the biosphere-atmosphere exchange fluxes, 

utilizing atmospheric CO2 concentration measurements from the Ochsenkopf tall 

tower, is presented. The modeling framework also uses the information provided by 

eddy covariance flux towers and remote sensing data streams which are used to 

constrain prior knowledge of the biosphere-atmosphere fluxes in inverse analysis. 

The posterior fluxes (after the inversion) are estimated and the reduction in 

uncertainties of these retrieved fluxes is assessed. Moreover these fluxes are 

compared with direct observations from independent eddy flux measurements. 

Chapter 6 presents these results. 

 
Overall, the thesis shows that a mesoscale model-data fusion system consisting of a 

weather prediction model, a Lagrangian adjoint transport model, and a diagnostic 

biosphere flux model is capable of simultaneously utilizing information from tower-

based mixing ratio observations, eddy covariance flux measurements, and remote 

sensing of the biosphere to estimate surface-atmosphere fluxes at an unprecedented 

spatial resolution of 2 km. The high-resolution allows for a much better 

representation of the near-field around atmospheric observing sites, significantly 

reducing model representation errors, specifically for complex terrain sites such as 

mountains, compared to previous inverse transport models. Future work will be 

needed to implement such a system for a full network of atmospheric observing 

stations. 
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ZZUUSSAAMMMMEENNFFAASSSSUUNNGG  

  
Ein verbessertes quantitatives Verständnis der geographischen Verteilung der Quellen 

und Senken von Kohlenstoffdioxid (CO2)  ist im Zuge des Klimawandels 

unerlässlich. Kenntnisse über die regionale Verteilung des Austausches von CO2 

zwischen Biosphäre und Atmosphäre sind wichtig, um mögliche Rückkopplungen 

zwischen Klima und Kohlenstoffkreislauf einschätzen zu können. Dies ist auch 

entscheidend für die Entwicklung von Strategien, die dem Klimawandel 

entgegenwirken, wie die Verminderung von CO2-Emissionen oder die Sequestrierung 

von Kohlenstoff. Messungen der atmosphärischen CO2-Konzentration geben 

Auskunft über den CO2-Austausch zwischen Erdoberfläche und Atmosphäre. Diese 

Information kann quantitativ aus Messungen in der Atmosphäre in Kombination mit 

inverser Transportmodellierung auf verschiedenen räumlichen und zeitlichen Skalen 

abgeleitet werden. Dazu werden a-priori-Informationen über die zeitliche und 

räumliche Verteilung von Austauschflüssen zwischen Erdoberfläche und Atmosphäre 

in einem Bayesschen Ansatz verwendet.  Bisher werden größtenteils 

Inversionssysteme auf globaler Skala verwendet, um die Verteilung der Quellen und 

Senken von CO2 abzuschätzen. Das Beobachtungsnetz dieser Systeme umspannt den 

gesamten Globus und wurde kürzlich um Beobachtungsstationen auf hohen Türmen – 

sogenannten Tall Towers – erweitert. Jedoch werden die Messungen auf diesen hohen 

Türmen oft durch die starke Variabilität der CO2-Flüsse an der Erdoberfläche im 

Bereich des Nahfeldes (Umkreis von 20-100 km von der Beobachtungsstation) und 

durch mesoskalige Transportphänomene in der Atmosphäre beeinflusst. Dies löst 

signifikante Änderungen der CO2-Flüsse auf einer Skala aus, die von gängigen 

globalen Modellen (mit einer maximalen räumliche Auflösung von bis zu einem 

Grad), nicht mehr erfasst werden können. Dies kann zu systematischen Fehlern in der 

Abschätzung der Flüsse führen. Des Weiteren  sind die Flüsse im Nahfeld der 

Beobachtungsstationen hochgradid variabel, was die Notwendigkeit einer 

Spezifizierung von hochaufgelösten a-priori-Austauschflüssen bedingt.  Dies 

erfordert die Entwicklung eines hochaufgelösten Modellsystems. 

 
Die hier vorliegende Dissertation stellt eine Inversionsmethode vor, welche die 

räumliche Variabilität von CO2 auf der Mesoskala miteinbezieht. Ein hochaufgelöstes 

Modellsystem wird erstellt, um den Austausch von CO2 zwischen Biosphäre und
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Atmosphäre mithilfe von Flugzeug- und Bodenstationsmessungen zu ermitteln. Es 

besteht aus drei verschiedenen Modellen: Dem Wettervorhersagemodell WRF 

(Weather Research and Forecast model), dem diagnostischen Biosphärenmodell 

VPRM (Vegetation Photosynthesis and Respiration model) und dem Partikel-

Dispersionsmodell STILT (Stochastic Time Inverted Lagrangian Transport Model).  

In Kapitel 3 dieser Arbeit wird anhand von hochaufgelösten Simulationen der 

Repräsentationsfehler – die Diskrepanz zwischen CO2-Beobachtungen und Resultaten 

inverser Modelle auf räumlicher Ebene, d.h. die von globalen Modellen nicht erfasste 

Variabilität - für die jetzige Generation globaler Modelle ermittelt. Dies geschieht 

unter Verwendung von Satellitenmessungen. Die berechneten Repräsentationsfehler 

liegen oberhalb der angestrebten Genauigkeit von Satelliten-Retrievals. Daher wurde 

ein lineares Modell entwickelt, das etwa 50% des räumlichen Verteilungsmusters in 

der systematischen Komponente des Repräsentationsfehlers erklären kann.  Diese 

Ergebnisse legen eine mögliche Parametrisierung des Repräsentationsfehlers nahe, 

die Strukturinformationen über diesen Fehler für die Anwendung in inversen 

Modellen oder Datenassimilationssystemen nutzbar macht. 

 
In Kapitel 4 wird die Fähigkeit hochaufgelöster Modelle zur Simulation von 

dreidimensionalen meteorologischen und CO2-Feldern an einer auf einem Berg 

gelegenen deutschen Beobachtungsstation – dem Ochsenkopf im Fichtelgebirge - 

untersucht. Diese Fähigkeit ist unerlässlich, um Messungen von 

Beobachtungsstationen, die sich in komplexer Orographie (z.B. auf Bergen oder an 

Küsten) befinden, in ein atmosphärisches Inversionssystem zur besseren Abschätzung 

der regionalen Flüsse von diesen Spurengasen einzubinden. Zu diesem Zweck 

wurden Messungen des Ochsenkopf-Turms in verschiedenen Höhen und zu 

verschiedenen Jahreszeiten, sowie Daten von einer Flugkampagne in der Nähe des 

Messturm verwendet. Die Resultate zeigen, dass hochaufgelöste Modelle den 

Tagesgang sowie die saisonale und synoptische Variabilität der beobachteten 

Mischungsverhältnisse wesentlich besser wiedergeben als globale Modelle.  Die 

Effekte von mesoskaligen Transportphänomenen wie Berg-Tal-Zirkulation oder 

internen Schwerewellen auf die CO2-Verteilung in der Atmosphäre werden in den 

hochaufgelösten Modellen bemerkenswert gut wiedergegeben. Diese Studie 

unterstreicht das Potential, hochaufgelöste Modelle in Inversionsmodellsystemen zu 
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verwenden, um Beobachtungen von Bergstationen oder generell Messstationen in 

komplexem Terrain zu verwenden.  

In Kapitel 5 wurde ein quantitativer Vergleich zwischen CO2-Simulationen des auf 

der Eulerschen Zerlegung basierenden WRF-Modells und des Lagrange´schen 

Transportmodells STILT durchgeführt. Hierbei wurden jeweils identische 

Meteorologie und Austauschflüsse zwischen Erdoberfläche und Atmosphäre 

verwendet, um die Konsistenz von Transport und turbulenter Mischung in beiden 

Modellen zu prüfen. Die Unterschiede zwischen beiden Modellen stellten sich in den 

meisten Fällen als klein heraus. Eine Fallstudie analysiert unter Benutzung von 

Flugzeugmessungen im Detail einen Extremfall, für den beide Modelle größere 

Abweichungen voneinander zeigen. Es zeigt sich, dass sehr wahrscheinlich eine 

genauere Einstellung der Parametrisierung für die turbulente 

Geschwindigkeitsvarianz und die Lagrange´schen Zeitskala im STILT-Modell für die 

Verwendung hochaufgelöster meteorologischer Felder notwendig sind. Im Vergleich 

zu realen Beobachtungen liegen die Unterschiede zwischen den von beiden Modellen 

simulierten CO2-Zeitreihen generell einen Faktor zwei niedriger. Dies rechtfertigt es, 

das STILT-Modell als ein adjungiertes Modell zu WRF zu benutzen, weist aber 

gleichzeitig darauf hin, dass weitere Verbesserungen erforderlich sind, um auf solch 

einer hohen Auflösung zu arbeiten.  

 
Ein mesoskaliges Inversionssystem zur Ermittlung der Austauschflüsse zwischen 

Erdoberfläche und Atmosphäre, das die atmosphärischen CO2 

Konzentrationsmessungen der Beobachtungsstation auf dem Ochsenkopf benutzt, 

wird in Kapitel 6 vorgestellt. Das Modellsystem verwendet zusätzlich Informationen 

von Eddy-Kovarianz Flussmessungen auf Türmen und Datenströme von 

Fernerkundungssystemen in der inversen Analyse. Der a-posteriori-Fluss (d.h. der 

Fluss nach der Inversion) wird ermittelt und die Abnahme der Unsicherheiten der 

erhaltenen CO2-Flüsse berechnet. Darüberhinaus werden diese Flüsse mit direkten 

Beobachtungen von unabhängigen Eddy-Kovarianz Flussmessungen verglichen.  

 
In ihrer Gesamtheit zeigt die Dissertation, dass ein mesoskaliges Modell-Daten-

Fusionssystem, bestehend aus einem Wettervorhersagemodell, einem adjungierten 

Lagrange´schem Transportmodell und einem diagnostischen Biosphärenmodell, 

imstande ist, gleichzeitig Informationen über Mischungsverhältnisse von Turm-

Messstationen, Eddy-Kovarianz Flussmessungen und Fernerkundungsdaten der 
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Biosphäre zu verwenden, um die Austauschflüsse zwischen Erdoberfläche und 

Atmosphäre auf einer bisher noch nicht da gewesenen räumlichen Auflösung von 

2km zu berechnen. Die hohe Auflösung ermöglicht speziell für Orte mit komplexer 

Orographie, wie z.B. Berge, eine wesentlich bessere Darstellung des Nahfeldes im 

Umkreis der atmosphärischen Messstationen und eine signifikante Abnahme des 

Repräsentationsfehlers der Modelle im Vergleich zu bisherigen inversen 

Transportmodellen. Weitere Arbeiten werden allerdings notwendig sein, um eine 

solches System in ein komplettes Beobachtungsnetzwerk von atmosphärischen 

Messstationen einzubinden. 
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1 Introduction 

 
The Earth and its climate, upon which life depends, have recently become society’s 

greatest concerns. Any anthropogenic interventions occurring on a scale capable of 

changing several complex physical, chemical and biological processes that involves 

linear as well as non-linear interactions among the atmosphere, hydrosphere and 

biosphere can affect the Earth’s climate in a profound way. Humans have brought 

about large perturbations to the natural cycling of the major elements (e.g. carbon, 

nitrogen, sulfur, phosphorous and trace metals) in the planet’s biogeochemical cycles 

in a variety of ways. Understanding the impact of these changes on the 

biogeochemical processes and their feedbacks on the climate system is critical for 

projecting changes in climate and is hence in high demand among various scientific, 

economic and political communities, both now and in the coming decades. 

 
As an example, it is widely known in the scientific community that an increase in 

greenhouse gases1 in the atmosphere can modify these processes and lead to a new 

stationary state (energy balance between incoming shortwave radiation and outgoing 

longwave radiation) with increased global surface temperature. Among the 

greenhouse gases of anthropogenic origin, the increase in atmospheric carbon dioxide 

(CO2) is of major concern due to its large contribution (32 Wm-2) to the total 

longwave radiative forcing2 of 125 Wm-2 (Kiehl and Trenberth, 1997). Additionally, 

there is clear evidence from the continuous records provided by observatories (e.g. 

Thoning et al. (1989)) and ice-cores (e.g. Leuenberger et al. (1992)) that the amount

                                                 
1 Gases which absorb (and re-emit in all directions) the thermal longwave radiation emitted from the 
earth surface and increase the opacity of the atmosphere. As a consequence, the Earth’s surface 
temperature is increased according to the Stefan-Boltzmann law (radiation is proportional to the fourth 
power of the Earth’s surface temperature). This effect was discovered in 1824 by Joseph Fourier and 
quantified in 1896 by Svante Arrhenius. The major greenhouse gases are water vapor (H2O), carbon 
dioxide (CO2), methane (CH4), tropospheric ozone (O3) and nitrous oxide (N2O).  
 
2 The radiative imbalance in the climate system caused by anthropogenic and natural influences. The 
Intergovernmental Panel on Climate Change (IPCC) defined radiative forcing is as follows: “a measure 
of how the energy balance of the Earth-atmosphere system is influenced when factors that affect 
climate are altered…Radiative forcing is usually quantified as the rate of energy change per unit area 
of the globe as measured at the top of the atmosphere, and is expressed in units of Watts per square 
meter (Wm-2). When radiative forcing from a factor or group of factors is evaluated as positive, the 
energy of the Earth-atmosphere system will ultimately increase, leading to a warming of the system. In 
contrast, for a negative radiative forcing, the energy will ultimately decrease, leading to a cooling of 
the system.” (Forster et al., 2007) 
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of CO2 in the atmosphere has been increasing exponentially since the beginning of 

the industrial era (~260 years ago). Naturally the significant and long-lasting 

influence of CO2 on the Earth’s radiation budget and on the global climate system 

provides a strong motivation for scientific research on the global carbon cycle. 

 
The purpose of this chapter is to review the present state of carbon research, which 

provides the impetus for this thesis. The first part of this chapter reviews the current 

understanding of the global carbon cycle, focusing on human perturbations to the 

climate system. The second part evaluates in brief the significance of managing the 

carbon cycle and the requirement to do so, as well as the key scientific questions in 

the context of international environmental treaties related to climate change. This is 

followed by recent progress in deriving the atmospheric CO2 budget (third part). The 

fourth and fifth parts address recent developments in the observational and modeling 

methodologies to aid the efforts towards climate change mitigation and adaptation as 

well as carbon sequestration. Finally, in the sixth part, the scope and objectives of this 

thesis are presented together with the thesis outline. 

1.1 Global carbon cycle 
 
The major carbon reservoirs are the atmosphere, the hydrosphere (ocean including 

fresh water bodies), terrestrial biosphere, and the lithosphere (sediments and 

sedimentary rocks). Carbon is exchanged actively among the aforementioned first 

three reservoirs within the time frame of years to centuries (fast spheres). However 

the carbon flux rates are slower through the sediments and sedimentary rocks (via 

processes such as weathering, glacial erosion and volcanic activities) with millennial 

time scales (slow spheres), despite its larger storage capacity of about 9×107 

Petagrams of carbon per year (Pg C yr-1) (Sundquist, 1993). An overview of the 

carbon cycle is shown in Fig. 1.1. Since the carbon exchanges through the slow 

spheres are generally less significant in carbon budgets on time scales of a century or 

so, further discussions are limited to the fast reservoirs. 

1.1.1 The atmosphere 
 
As evident from Fig. 1.1, atmospheric carbon plays an important role in linking 

various biological, physical and anthropogenic processes. The carbon is mainly 

present in the atmosphere as CO2 together with minor amounts of CH4, CO and other 
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trace gases, mostly hydrocarbons. The long-term observational evidence of the 

atmospheric CO2 mixing ratios suggests that the amount continues to rise with an 

average annual growth rate of 3.4± 0.1 Pg C yr-1, reaching the present global average 

mixing ratio of 387.2 ppm (http://www.esrl.noaa.gov/gmd/ccgg/trends/). Figure 1.2 

shows, as an example, the longest record of direct measurements of atmospheric CO2, 

available since 1958 at Mauna Loa Observatory, Hawaii (Keeling et al., 1976).  

Unequivocally, the increase in CO2 from ~280 ppm in the pre-industrial times 

(Etheridge et al., 1996) to the present value has been caused by fossil fuel emissions, 

deforestation and other land-use changes. The higher amount of atmospheric CO2 is 

reported to be the major cause of global warming (Le Treut et al., 2007). 

 
 
Figure 1.1  A schematic overview of the global carbon cycle, showing the main annual mean 
fluxes of carbon in units of Pg C yr-1(Petagrams of carbon per year; 1 Pg C = 1015 grams C). 
The annual estimates of natural fluxes are given in black and anthropogenic fluxes are in 
orange. The major reservoirs are depicted as cubes with the carbon storage size in Pg C. 
Inside the cube: the pre-industrial (prior to the year 1750) estimates of carbon content in the 
reservoirs are in yellow and the anthropogenic perturbations are in orange. The vertical bar 
in grey (at the left-hand side) denotes the time-scale on which various components of the 
global carbon cycle interact with the atmosphere. For more details on the estimates of fluxes 
and reservoirs shown here, the reader is referred to the IPCC report 
(http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter7.pdf). *: Recent 
updates from Friedlingstein (2010). **: taken from Sundquist (1993). 
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The global fossil fuel emissions of CO2, computed from statistics of energy 

consumption at the country level, are shown in Fig. 1.3. The emissions due to fossil 

fuel and cement emissions show an increasing growth rate until the year 2008 and 

then a decrease by 1.3% in the next year, owing to the financial crisis that began in 

the year 2008. The current fossil fuel and cement emissions are estimated to be 

8.4± 0.5 Pg C, however they are projected to increase by 3% in the year 2010, 

according to economic growth predictions (Friedlingstein, 2010).  On the other hand, 

a decreasing trend in emissions due to deforestation and land-use change is found, 

with current estimates of about 1.1± 0.7 Pg C (Canadell et al., 2007; Friedlingstein, 

2010; Le Quéré et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  The complete time series of monthly averaged atmospheric CO2 mixing ratios (the 
red curve), expressed as parts per million [ppm] on Mauna Loa, Hawaii, the longest record 
of direct measurements of CO2 in the atmosphere. The black curve represents the seasonally 
corrected data (as determined as a moving average of adjacent seasonal cycles). The inset 
zooms in on the period over the last four years. The annual CO2 growth-rate at this site for 
the year 2009 is 1.92± 0.11 ppm yr-1. Data are courtesy of http://www.esrl.noaa.gov/.  

As can be seen from Fig(s).1.2 and 1.3, the annual growth rate of atmospheric CO2 is 

significantly smaller than the increment in the anthropogenic emissions, which is due 

to the fact that the terrestrial biosphere and the ocean (see following sections) act as 



                                                                                                                                               Introduction 
 

 5

natural sinks to remove a large part of these CO2 emissions from the atmosphere. The 

term airborne fraction3 (AF) is used to assess the efficiency of these natural reservoirs 

and it is found to be 0.45 on average (Canadell et al., 2007; Marland et al., 2007), i.e. 

45% of the anthropogenic CO2 emissions remained in the atmosphere and the rest 

were absorbed by terrestrial and oceanic sinks. The AF exhibits large inter-annual 

variability due to varying responses of sources and sinks, particularly over land. The 

increasing trend of the AF and its statistical significance are still debated (Knorr, 

2009) due to many unknowns such as coupling mechanisms between emission rates 

and source strengths as well as deforestation fluxes (van der Werf et al., 2009).   

Figure 1.3  Global CO2 emissions from fossil fuel (based on United Nations Energy Statistics) 
and cement production (from the US Geological Survey). The inset shows CO2 emissions 
from deforestation and land-use changes (based on statistics from the Food and Agriculture 
Organization of the United Nations). The black solid curve with circles shows results from Le 
Quéré et al. (2009) and the black dashed curve is the updated emission information from 
Friedlingstein (2010). The plot is reproduced from Friedlingstein (2010). The red dot denotes 
projections for the year 2010. 
 
 

                                                 
3 According to IPCC report, the airborne fraction is defined as the atmospheric CO2 increase as a 
fraction of total anthropogenic CO2 emissions, including the net land use fluxes. 
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1.1.2 Ocean-atmosphere exchange 

 
The total amount of carbon in the ocean is approximately 38,100 Pg C, i.e. nearly 50 

times more than that in the atmosphere. About 98.5% of this oceanic carbon exists as 

dissolved inorganic carbon (DIC) in the ocean, mostly in the form of bicarbonate and 

carbonate ions. The two independent estimates of ocean fluxes, based on (inverse) 

modeling (Fletcher et al., 2006) and on estimates of air-sea differences of partial 

pressure of CO2 (pCO2) (Takahashi et al., 2008), show good agreement (Gruber et al., 

2009) with differences at the regional level less than 0.1 Pg C yr-1. On the global 

average, for the period between 1995 and 2000, the above-mentioned inverse study 

predicted an uptake flux of anthropogenic carbon of 2.2± 0.3 Pg C yr-1, while the 

pCO2 climatology estimated 1.9± 0.7 Pg C yr-1. The Southern Ocean (south of 44° S), 

being the strongest regional oceanic sink for anthropogenic CO2, received much 

attention recently. The inverse simulations show that the Southern Ocean reacted in a 

highly sensitive manner to climate variability over the past 50 years, and will likely 

continue to do so for a given future climate change (Gruber et al., 2009). The limited 

observational evidences and the lack of consideration of long-term changes in the 

ocean carbon cycle make it difficult to determine with sufficient confidence whether 

or not the Southern Ocean sink is varying in a significant manner (Gruber, 2009). In 

the North Atlantic (the largest ocean sink for atmospheric CO2 in the Northern 

Hemisphere), the sink of atmospheric CO2 exhibits substantial interannual variability 

and the oceanic uptake in the region between 20° N and 65° N declined by 0.24 Pg C 

yr-1 from 1994-1995 to 2002-2005 (Schuster and Watson, 2007). However, it is too 

early to draw firm conclusions as to whether this decline is linked to a rearrangement 

of the global oceanic carbon cycle in response to climate variations or to natural 

variations in the North Atlantic Oscillation.  More comprehensive studies are needed 

with appropriate observational systems to quantify accurate estimates of ocean carbon 

sinks and to assess future changes in the ocean carbon cycle. 

1.1.3 Terrestrial biosphere 

 
The amount of carbon stored in land vegetation is comparable to the amount 

contained in the atmosphere, while the soil contains nearly two to three times this 

amount. There is rapid exchange of carbon between the atmosphere, terrestrial biota 

and soils through processes such as photosynthesis and decomposition. The 
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complexity of the biological systems involving carbon storage, the large 

heterogeneity of terrestrial vegetation and soils and the effect of land-use changes 

make it difficult to quantify their role in the global carbon cycle. For this reason the 

net exchange of carbon between the terrestrial ecosystems and the atmosphere is 

highly uncertain, giving rise to the largest uncertainty in the global carbon budget4 

(e.g. Dolman et al. (2008), Schimel et al. (2001)).  

 
Two methods including different processes namely, top-down (Peters, 2010; Peylin et 

al., 2005b; Rödenbeck et al., 2003a; Enting, 1993; Gurney et al., 2002; Lauvaux et 

al., 2008) and bottom-up (Desai et al., 2005; Hurtt et al., 2001; Luyssaert et al., 2007; 

Luyssaert et al., 2008) methods are currently used to estimate terrestrial sources and 

sinks. The top-down method (inverse approach) utilizes the observed atmospheric 

CO2 concentrations to back-calculate the distribution of sources and sinks at regional 

or continental scales, using atmospheric transport models, while the bottom-up 

method estimates biospheric uptake directly from forest inventories or by process-

based ecosystem models from local scales (leaf-level process information) to the 

region and to the globe. As there is no direct method to infer the carbon budget, the 

accuracy of the aforementioned approaches largely depends on the validity of the 

underlying assumptions. Both approaches often give contradictory results as shown in 

Fig. 1.4; hence a detailed analysis of the carbon balance is necessary to quantitatively 

separate sources and sinks to close the gap between these approaches.  

 
Recently, attempts have been made to estimate the carbon balance of Europe and 

China by combining top-down and bottom-up approaches through various data and 

modeling streams such as inventories, field measurements, remote sensing, process-

based ecosystem models, and atmospheric inversions (Piao et al., 2009; Schulze et al., 

2009). These studies reported a terrestrial net carbon sink of 0.27± 0.16 Pg C yr-1 for 

continental Europe (Schulze et al., 2009) between the years 2000 and 2005 and 0.23 

± 0.04 Pg C yr-1during the 1980s and 1990s (Piao et al., 2009). 

 

 

 
                                                 
4 The balance between sources and sinks of CO2 in the atmosphere, expressed in terms of 
anthropogenic emissions and fluxes between the main reservoirs and the build-up of CO2 in the 
atmosphere. 
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Figure 1.4  (a) Global and (b) regional terrestrial CO2 fluxes in Pg C yr-1. The fluxes 
provided by inversion models are in green: square-Gurney et al.(2002), circle- Gurney et al. 
(2003), Triangle- Peylin et al. (2005a) and inverted triangle- Rödenbeck et al.(2003b). The 
bottom-up estimates of regional fluxes (in orange) are based on Fang (2001), Janssens et 
al.(2003), Kurz and Apps (1999), Pacala et al. (2001), Shvidenko and Nilsson (2003). Fluxes 
to the atmosphere are given as positive numbers and land uptake has a negative sign. Data 
courtesy of Denman et al. (2007). 

1.2 International Climate Treaty: Significance and Requirements 
 
An international treaty, the United Nations Framework Convention on Climate 

Change (http://unfccc.int/2860.php), with the participation of 194 parties, entered into 

force on 21st March 1994, and laid out emission reduction and sequestration strategies 

toward climate change mitigation. The ultimate objective of the Convention is the 

“stabilization of greenhouse gas concentrations in the atmosphere at a level that will 

prevent dangerous human interference with the climate system.” A more powerful 

addition to the treaty, the Kyoto Protocol (http://unfccc.int/kyoto_protocol/items/ 

2830.php) was approved on 16th February 2005, as a first step for providing the 

essential architecture for any future international agreement on climate change. As a 

response to the Kyoto protocol, more than 100 countries have adopted a global 

warming limit of 2 °C or below. However, determining probabilistic climate change 
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in response to the future emission scenarios is challenging owing to the current 

uncertainties in the carbon cycle, radiative forcing and climate feedbacks5. Reliable 

estimates of sources and sinks at high-resolution temporal and spatial scales are 

indispensable in predicting future increases in atmospheric CO2 to a high degree of 

certainty. Furthermore, the feedback mechanisms between the carbon cycle and the 

global climate system must be incorporated in general circulation models (GCM) for 

projecting changes in climate (Denman et al., 2007).  These feedbacks are particularly 

important for implementing emission reduction and sequestration strategies 

(Meinshausen et al., 2009). The strong scientific interest in regional aspects of the 

global carbon cycle provides the impetus to better constrain the regional carbon 

balance. Moreover, under the Kyoto protocol, ratifying nations are required to 

provide state-level estimates of anthropogenic emissions of greenhouse gases from all 

sources together with the estimates of uptake by natural sinks 

(http://unfccc.int/essential_background/kyoto_protocol/items/1678.php). 

 
In brief, the key questions in the scientific community are: 

• Where and by which processes is anthropogenic CO2 sequestered?  

• What are the main feedback processes between the carbon cycle and the  

climate system?  

• What is the carbon budget of a specific region (continent/country)? 

1.3 Atmospheric Carbon budget 
 
Over the last decades, significant progress has been attained in our knowledge of the 

magnitude of carbon fluxes on global (e.g.Denman et al.(2007), Le Quéré et 

al.(2009)), continental (e.g. Schulze et al.(2009), and regional (e.g. Dolman et 

al.(2009), Gerbig et al.(2009), Lauvaux et al.(2009)) scales by using bottom-up or 

top-down approaches or a combination of both. At small scales, eddy-covariance 

measurements can provide detailed insight to the exchange of CO2 between the 

surface and the atmosphere (e.g. Law et al.( 2002a), Reichstein et al.(2007b). These 

local scale flux estimates are scaled-up using process-based or diagnostic models 

                                                 
5 The Intergovernmental Panel on Climate Change (IPCC) defined climate feedback is as follows: “An 
interaction mechanism between processes in the climate system is called a climate feedback, when the 
result of an initial process triggers changes in a second process that in turn influences the initial one. A 
positive feedback intensifies the original process, and a negative feedback reduces it.” 
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utilizing satellite retrievals of geographical properties (vegetation cover, topography, 

etc.), climate records (temperature, precipitation, etc.) and statistical models (land-use 

change, energy consumption, etc.) to provide flux estimates on large scales (e.g. 

http://geo.arc.nasa.gov/sge/casa; (Reichstein et al., 2007a)). The accuracy of this 

approach relies on the representativeness of the local flux measurement site; hence 

one can expect significant uncertainties when extrapolating non-representative eddy 

flux tower measurements. Additionally, the evaluation of these spatial flux products 

is challenging as there are no direct measurements at these large scales. 

Globally, inverse techniques are used to infer the magnitude and location of major 

fluxes from their signatures on atmospheric CO2 concentrations via atmospheric 

transport models which describes the atmospheric transport from the source region to 

the observation sites (e.g. Enting (1993), Gurney et al.(2003), Rödenbeck et 

al.(2003b)). Those techniques are now increasingly mature with refinement of the 

modeling strategies (see Sect. 1.5) and the availability of new observations (see Sect. 

1.4), and have successfully demonstrated their capability to assess the overall carbon 

budget from global to continental scales, albeit with substantial uncertainty (e.g. 

Stephens et al.( 2007)). The derived fluxes are representative over a large region of 

several hundreds of kilometers and are on scales at which climate anomalies interact 

with biosphere; however these horizontal scales are too coarse to represent the 

responses of various vegetation types and the impact of human interventions (land 

use change and land management) on land-atmosphere fluxes. In order to investigate 

in detail the impact of the sub-grid scale processes listed above, inverse modeling 

studies are attempted on regional scales (Gerbig et al., 2003b; Matross et al., 2006; 

Lauvaux et al., 2008). However, inadequate measurement networks for atmospheric 

CO2 concentrations and uncertainties in the simulated atmospheric transport can 

cause large uncertainties on the flux estimates derived from this approach.  

 

Further discussion is restricted to topics related to regional inverse modeling studies 

in order to remain within the scope of this thesis. In the following sections, an 

overview on current measurement networks for monitoring atmospheric CO2      

(Sect. 1.4) and progress in modeling techniques are reviewed.  
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1.4 Measurement network 
 
Measurements of atmospheric greenhouse gases and related tracers at high spatial and 

temporal resolutions are a prerequisite for inverse modeling approaches. This can be 

achieved by a global network of ground-based stations which routinely monitor 

atmospheric constituents with increasing accuracy together with in-situ and flask 

measurements made from different platforms such as airplanes, ships and buoys. 

These networks are currently complimented with observations from satellite-based 

remote sensing (e.g. Heimann (2009), Chevallier et al.(2009)) while ground-based 

(Fourier Transform Spectrometers) remote sensing is being used to validate satellite 

retrievals (e.g. Wunch et al.(2010)). 

 
Long-term measurements, often from ground-based stations, contain valuable 

information about sources and sinks. Globally, about 100 stations provide continuous 

measurements of atmospheric CO2 concentrations with an accuracy sufficient for 

modeling applications (www.wmo.int/gaw/; (Marquis and Tans, 2008); see Fig. 1.5). 

Until a decade ago, most of the monitoring sites were remotely located (i.e. near 

coasts or on mountain) in order to avoid the strongest influences from highly variable 

land-based sources and sinks (fossil fuel and biospheric fluxes). The observations 

from these remote stations, exhibiting small temporal and spatial variability, can 

hence be used to estimate global flux patterns and meridional concentration gradients. 

Conversely, these measurements cannot be used to construct regional flux patterns 

due to their lack of diurnal fluctuations in response to terrestrial fluxes (Gloor et al., 

2000). An improved estimate of regional sources and sinks requires measurements 

over the continents and in the atmospheric boundary layer. At the same time, the 

influence from the very near-field fluxes (approximately within 10 km radius) has to 

be minimized in order to increase the representativeness of the measurements (Gloor 

et al., 2001; Gloor et al., 2000).  This can be achieved by using tall towers equipped 

with in situ measurement devices at different heights (Bakwin et al., 1997; Bakwin et 

al., 1998). Over the last decades, several tall towers have been set up in the US 

(Bakwin et al., 1997; Bakwin et al., 1998; Hurst et al., 1997), Europe (see 

http://www.chiotto.org/; Vermeulen et al. (2010)), Siberia (Kozlova and Manning, 

2009), and Japan (Inoue and Matsueda, 2001). Three of these tall towers: one in 

Siberia and two in Europe – Ochsenkopf in Germany (used for this study) (Thompson et 
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al., 2009), and Bialystok in Poland (Popa, 2007) – are operated by the Max Planck 

Institute of Biogeochemistry in Jena, Germany.  

 
Additionally, the long-term isotopic measurements such as radiocarbon (14C) can be 

used to differentiate anthropogenic signals from total atmospheric CO2 concentrations 

(Levin and Karstens, 2007; Levin and Rödenbeck, 2008). This is possible because of 

the absence of 14C in the fossil fuel CO2 component due to their long storage time of 

several hundred million years. Other species such as carbon monoxide (CO) and 

oxygen (O2) can also be used as tracers for anthropogenic fluxes of CO2. 

 

 

Figure 1.5  The global observational network of atmospheric CO2 concentrations provided by 
World Meteorological Organization (WMO).Figure courtesy of 
http://www.wmo.int/pages/prog/arep/gaw/ghg/documents/ghg-bulletin2008_en.pdf 
 
Airborne measurements with high precision and accuracy provide an important 

complement to the existing network. Aircraft campaigns, sampling air horizontally 

(from hundreds to thousands of kilometers) and vertically (from ground level up to 

about 12 km) are well suited to measure distributions of atmospheric tracers such as 

CO2 at different temporal and spatial scales. These measurements help tremendously 

to understand the regional patterns of trace gases, the influence of surface fluxes in 

the near-field, as well as to validate atmospheric transport models (Dolman et al., 

2006; Gerbig et al., 2003b; Lin et al., 2006; Sarrat et al., 2007). Over last decades 

there has been a move to conduct several aircraft campaigns or regular profiling in 
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the vicinity of ground stations (e.g. [CO2 Budget and Rectification Airborne study 

(COBRA), (Gerbig et al., 2003a)]; [The CarboEurope Regional Experiment Strategy 

(CERES), (Dolman et al., 2006)]; [Terrestrial Carbon Observation System Siberia, 

(Levin et al., 2002) ];  [Regional Assessment and Modelling of the Carbon Balance of 

Europe, (Gioli et al., 2004) ]; [The Landes de Gascogne campaign, (Schmitgen et al., 

2004)]; [The Ochsenkopf campaign using the METAIR-DIMO aircraft 

(http://www.metair.ch/), used for this study] . Furthermore, it is also possible to 

sample the air with measurement devices on board commercial airliners and to 

provide routine measurements at an altitude of 9 to 12 km which supplement the 

airborne campaigns (Machida et al., 2008; Chen, 2010). 

 
Space-borne measurements providing column-integrated CO2 concentrations with 

better spatial and temporal sampling as well as with adequate precision (~1 ppm) are 

expected to be a valuable addition to our current knowledge of regional sources and 

sinks, especially in tropical regions where long-term measurements are scarce (Miller 

et al., 2007; Rayner and O'Brien, 2001). An imaging spectrometer, SCIAMACHY 

(Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) aboard 

ENVISAT (ENVIronmental SATellite; a polar-orbiting satellite by European Space 

Agency (ESA) launched on 2002) is the first satellite instrument measuring CO2 

concentration (Bovensmann et al., 1999). However, SCIAMACHY, with its large 

footprint size (about 50 km) was not particularly designed for CO2 retrievals with the 

precision and accuracy required for inverse modeling studies. The Japan Aerospace 

Exploration Agency’s (JAXA) Greenhouse gases Observing SATellite 

(‘IBUKI’/GOSAT), specifically designed to provide highly accurate and precise 

measurements of CO2 and CH4 (Chevallier et al., 2009; Hamazaki et al., 2004) was 

successfully launched and has been mapping these gases since then, with a footprint 

size of 10.5 km. In addition, a US satellite mission, the Orbiting Carbon Observatory 

(OCO), by the National Aeronautics and Space Administration (NASA) is designed 

to provide highly accurate and precise measurements of CO2, with a footprint size of 

1.3 km (Crisp et al., 2004). Unfortunately the OCO spacecraft was lost in a launch 

vehicle failure in February 2009; however the next mission, OCO-2, to be launched 

by February 2013, is expected to replace the lost OCO 

(http://www.nasa.gov/mission_pages/oco/main). Furthermore, a new satellite mission 

proposal – Carbon monitoring SATellite (CarbonSat) (Bovensmann et al., 2010) – 
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has been selected in November 2010 by ESA for further development and is planned 

to be launched in 2018 for global measurements of CO2 and CH4 with a footprint size 

of 2 km and a measurement swath of 500 km, for maximum spatial coverage 

(http://www.esa.int/esaCP/SEMD9AGMTGG_index_0.html).   

 
It has to be mentioned that the current in-situ observation network is not sufficient to 

adequately reduce uncertainties in surface flux estimates (e.g. Gurney et al.(2003)). 

Satellite-based measurements of column-integrated CO2 concentrations are expected 

to improve the situation by providing global measurements of these greenhouse 

gases. However, the short-term measurements within the life span of those spacecraft 

would make it impossible to track the long-term evolution of sources and sinks of 

these trace gases (Heimann, 2009). The long-term and well-calibrated in-situ 

measurements are hence an irreplaceable part of any future network. .  

1.5 Modeling strategies at the regional scale 
 
As mentioned in Sect. 1.3, there is a strong need to apply atmospheric inverse 

modeling tools at regional scale and to utilize continental (non-background) 

measurements of CO2 such as those made from tall tower observatories in order to 

investigate in detail the impact of small-scale processes on the distribution of carbon 

sources and sinks. Retrieving fluxes at these scales, however, poses considerable 

challenge since those measurements are often influenced by strong variability of 

surface fluxes (fossil fuel emissions and biosphere-atmosphere exchange) and by 

mesoscale (2 to 20 km) transport phenomena, complicating the interpretation of these 

measurements (Ahmadov et al., 2007; Gerbig et al., 2009; Pérez-Landa et al., 2007; 

van der Molen and Dolman, 2007). These variations, which are on scales that cannot 

be resolved by the current global models, which operate at spatial scales on the order 

of 100 km or more, can introduce significant biases in flux estimates derived from 

inverse modeling (Peters, 2010).  

 
The aforementioned fine-scale structures can be effectively represented by mesoscale 

transport models with much higher horizontal resolutions of about 2 to 20 km 

(Ahmadov et al., 2007; Pérez-Landa et al., 2007; Sarrat et al., 2007; van der Molen 

and Dolman, 2007; Sarrat et al., 2009). A comprehensive model inter-comparison 

study over Europe, using various global and regional transport models with different 

horizontal and vertical resolutions, suggested that the fine-scale features are better 
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resolved at increased horizontal resolution down to 50 km compared to coarse models 

(Geels et al., 2007). Furthermore, Geels et al.(2007) discussed the several limitations 

on using measurements from short towers or mountain stations due to the models’ 

(both global and regional scale models) inability to represent complex terrain and to 

capture mesoscale flow patterns in mountain sites. As a consequence, current 

inversion studies tend to exclude the data from these complex sites, impose less 

statistical weighting (larger uncertainty), or implement temporal data filtering to the 

measurements (e.g. selection of night-times only data at mountain sites). However, 

these fine structures in atmospheric CO2 concentration patterns provide substantial 

information on the near-field fluxes (within a 20 km radius) due to their dominant 

influence on observed mixing ratios (see Fig. 1.6) and incorporating these in the 

inversion can therefore improve the regional flux estimates (e.g. Gerbig et al.(2009)). 

Also the temporal data filtering results in fewer constraints on the diurnal cycle of 

biospheric signals that are controlled by processes such as ecosystem respiration and 

photosynthesis.  Moreover, using high temporal resolution measurements can provide 

large reductions in uncertainty in regional inversions (Law et al., 2002b).  

 
Figure 1.6  Contributions to atmospheric CO2 concentrations by biospheric fluxes (respiration 
and photosynthesis) at 15:00 local time for different distances from the measurement 
location. These contributions are calculated for different distance sectors and are shown in 
different color gradients. The color bar indicates the upper limit of each of the different 
distance sectors. The biospheric signal is positive in case of respired CO2 release through 
respiration and negative in case of CO2 uptake through photosynthesis. The dominant 
influences are caused by the fluxes from the first 20 km distance sector and then decrease 
rapidly. The figure courtesy of Gerbig et al.(2009). 
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One must also utilize improved a priori knowledge of fluxes which represents this 

short-scale variability in regional scale inversions, together with associated 

uncertainty estimates and error correlations (Gerbig et al., 2006). A model-data fusion 

system, as proposed by Gerbig et al.(2009), which combines high-resolution 

atmospheric transport and biospheric models together with atmospheric and 

biospheric measurements, is expected to address the shortcomings of current 

inversion systems. The associated uncertainties in the different modeling components 

 
Table 1.1:  Uncertainties involved in different components of model-data-fusion using mixing 
ratio measurements to derive regional fluxes of CO2 (Gerbig et al., 2009). 
 

Source of 

uncertainty 

Type of 

uncertainty 

Uncertainty estimates

(ppm) 

Reference 

 

Advection 

 

~5 

 

Lin and Gerbig (2005) 

PBL mixing ~3.5 Gerbig et al.(2008) 

Convection No estimate -- 

 

 

 

Transport 

model 
Mesoscale- 

processes 

~2-3 Tolk et al.(2008), van 

der Molen and Dolman 

(2007) 

 

Transport and 

Flux models 

 

Grid resolution 

 

~1 ppm at 200 km 

 

Gerbig et al.(2003a, 

2003b) 

 

Prior uncertainty 

 

~2-8 

 

Peylin (2008, Personal 

Communication), 

Gerbig et al. (2009) 

 

 

 

Flux model 

 

Aggregation 

 

variable 

 

Gerbig et al. (2006) 

 

Measurement 

 

Precision, 

accuracy 

 

0.1 

 

World Meteorological 

Organization 
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of such a model-data fusion system are quantified by Gerbig et al. (2008), Gerbig et 

al. (2006), Gerbig et al. (2003b), Lin and Gerbig (2005),  Tolk et al. (2008) and van 

der Molen and Dolman (2007), and are listed in Table 1.1. The sum of transport-

related uncertainties, nearly approaching 10 ppm as evident from Table 1.1, indicates 

the importance of improving atmospheric transport models, specifically for processes 

such as advection and convection in such model-data fusion systems. New modeling 

techniques that allow for high-resolution regional nesting around measurement sites 

in global models, as demonstrated by Rödenbeck et al.(2009), can thus provide 

regional CO2 budgets at reduced uncertainty limits. 

1.6 Thesis Objectives 
 
In light of the importance of improving transport modeling in the current inversion 

systems and of reducing the uncertainties in the top-down estimates of fluxes, this 

thesis deals with a number of shortcomings in the current inversion framework, with 

special attention to atmospheric transport modeling, and discusses possible ways to 

mitigate these shortcomings in order to derive regional CO2 to a significantly high 

degree of certainty. The study uses a model-data fusion system utilizing information 

from concentration and flux measurements to address the following scientific 

questions. 

 
1. How much of the spatial variability of atmospheric CO2 concentrations cannot 

be resolved by the current generation of global transport models?  

 
2. Can we parameterize this variability in coarser models without using high-

resolution simulations? 

 
3. What is the effect of complex mesoscale flows on the observed atmospheric 

CO2 fields? Can we represent this effect in the model? 

 
4. How well are the measurements from complex sites such as mountain 

observatories reproduced by the high-resolution modeling framework as 

compared to current global models?  

 
5. Can we use these measurements in future inversion studies? 

 

6. How consistent are different components of the model-data fusion system? 
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7. Do we have an inversion technique which has the potential to provide regional 

flux estimates at reduced uncertainty limits? 

 
The thesis is outlined as follows: 

 
Chapter 2 provides an overview of the modeling tools in the model-data fusion 

system used for this study 

 
Chapter 3 deals with the quantitative assessment of spatial variability of CO2 over 

Europe based on high-resolution simulations. The study is carried out in the context 

of utilizing satellite retrievals for atmospheric column CO2 concentrations in the 

current generation of inverse global models with a horizontal resolution of about 1 

degree or more. The spatial scale mismatch between remotely-sensed CO2 and global 

models can induce so-called representation errors, which can cause systematic biases 

in flux estimates. Chapter 3 is focused on estimating these representation errors and 

assessing how these errors can be parameterized in coarser models. 

 
Chapter 4 addresses the ability of high-resolution modeling tools to represent the 

spatial and temporal variability of CO2 over a complex terrain compared to coarser 

models. The study uses the measurements from the Ochsenkopf tall tower 

observatory, located on the second highest peak of the Fichtelgebirge mountain range 

(1022 m a.s.l.; 50° 1'48" N, 11°48'30" E) in Germany as well as profiles from a co-

located airborne campaign. The complexity of mesoscale flows and their impact on 

observed mixing ratios are also assessed. 

 
Chapter 5 provides an inter-comparison study with simulations of atmospheric CO2 

concentrations using two types of atmospheric models based on two different 

governing equations of motion – the Lagrangian and the Eulerian. A quantitative 

comparison between the two different approaches, while using the same initial/lateral 

boundary conditions, the same surface fluxes and the same domain, is required for 

having these components in the inverse modeling set-up used in this study.  The 

consistency of those simulations is assessed with special attention to the details of 

horizontal and vertical transport and mixing of CO2 concentrations in the atmosphere.  
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Chapter 6 presents an inversion technique which has the potential to provide 

regional flux estimates that are consistent with both mixing ratio and eddy flux 

measurements. The fluxes are estimated via an inverse technique utilizing 

concentration measurements from the Ochsenkopf tall tower. The reduction in 

uncertainties of retrieved fluxes is assessed and these fluxes are also compared with 

direct observations from eddy flux sites. 

 
Chapter 7 provides the main conclusions and the outlook of this thesis. 
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2 Model Overview 
 
As mentioned in the introduction (Chapter 1), a model-data fusion system is used to 

investigate the research questions addressed in this thesis. A schematic representation 

of the model-data fusion system is depicted in Fig. 2.1. The major modeling 

components of the fusion system consist of two transport models and a biosphere 

model. The purpose of this chapter is to give an overview of these components and to 

indicate the chapters in which these are used or described.  

 
 
Figure 2.1  Overview of the model-data fusion system used in this thesis. The numbers next to 
the arrows indicate the different steps in chronological order. The Eulerian system (step 1) is 
used for the results present in Chapter 3. The simulations generated by both the Eulerian 
(step 1) and the Lagrangian systems (step 2) are presented in Chapters 4 and 5. Chapter 6 
describes the inverse system (step 3) and presents these results.  

2.1 Transport models 
 
The fusion system consists of an Eulerian-based transport model, namely the Weather 

Research and Forecasting (WRF) model, and a Lagrangian-based particle dispersion 

model, namely the Stochastic Time-Inverted Lagrangian Transport (STILT) model, to 

take into account the distribution of CO2 transported by advection, convection and 

turbulence.
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2.1.1 WRF model 
 
The WRF model is a mesoscale numerical weather prediction system which is 

extensively used for both operational forecasting and atmospheric research studies 

such as parameterized-physics research, regional climate simulations, air quality 

modeling, and atmosphere-ocean coupling (Skamarock et al., 2008). The source code 

is freely available at: http://www.wrf-model.org/. The principal components of the 

WRF system are depicted in Fig. 2.2. The WRF consists of dynamics solvers, physics 

packages that interface with the solvers, programs for initialization of meteorological 

and other fields and WRF-Chem. These components are described in detail in 

Skamarock et al. (2008).  A brief description of the WRF model and its components 

are provided in this section.  

 

 
 
Figure 2.2  Overview of the principal components of the WRF model system used in this 
thesis. 
 
The WRF preprocessing system (WPS) defines a physical grid (i.e. simulation 

domain) including a map projection type. The model currently supports four map 

projections – the Lambert conformal, polar stereographic, Mercator, and latitude-

longitude grid – of which the Lambert conformal projection is used for this thesis. 

WPS interpolates static (i.e. terrain, land use etc.) as well as meteorological fields to 
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the projected domain. These fields are prescribed from either external analysis or 

forecast data (e.g. the U.S. Geological Survey (USGS), the European Centre for 

Medium-Range Weather Forecasts (ECMWF) model simulations etc.). The output of 

the WPS contains 3-dimensional meteorological fields (e.g. temperature, relative 

humidity, wind components, etc.), 2-dimensional static terrestrial fields (e.g. terrain 

elevation, vegetation/land use type, map scale factors, etc.) and 2-dimensional time-

dependent fields (e.g. surface pressure, soil temperature, soil moisture, etc.) on the 

selected model’s horizontal grid at the selected time slices. These fields are then 

passed to the dynamics solver for real-time simulations. 

 
The dynamics solver is the key component of the WRF model, which is composed of 

several programs for real-time simulation and numerical integration. The model 

solves the non-hydrostatic Euler equations on an Arakawa C-staggered horizontal 

grid and these governing equations are cast in flux form in order to conserve mass, 

momentum, entropy and scalars. Prognostic variables for this solver are the column 

mass of dry air, velocities, potential temperature, and geopotential. Non-conserved 

variables (e.g. temperature, pressure, density) are diagnosed from the conserved 

prognostic variables. Using the Arakawa C-grid staggering for spatial discretization 

means that the horizontal velocity components ( ,u v ) are located normal to the 

respective faces of the model grid cell, while the mass/thermodynamic/scalar 

variables (e.g. potential temperature (θ )) are defined at the center of the cell.  The 

model equations are formulated using a terrain-following hydrostatic pressure vertical 

coordinate, η  (Laprise, 1992). Note that the symbol η  used here is the same as the 

definition of the σ coordinate (more specifically “sigma-pressure”) used in many 

atmospheric models, but different from that of the traditional η  coordinate (e.g. 

Warner (2010)). The η  coordinate as used in the WRF community is defined as 

follows: 

 
( ) /h htp pη μ= −    where hs htp pμ = −     (1) 

 
and hp is the hydrostatic component of the pressure. hsp and htp represent values of 

pressure along the surface and the top boundaries respectively. By definition η  

monotonically decreases from 1 at the surface to 0 at the upper boundary of the model 

domain. Using this coordinate, the Euler equations can be expressed as follows: 
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( . ) P ( , )t x UU u p Fφ+ ∇ + =V        (2) 
y( . ) P ( , )t VV v p Fφ+ ∇ + =V        (3) 

( . ) P ( , )t WW w p Fη μ+ ∇ + =V        (4) 
( . )t Fθ ΘΘ + ∇ =V          (5) 
( . ) 0tμ + ∇ =V          (6) 

1[( . ) ] 0t gWφ μ φ−+ ∇ − =V        (7) 
( ) ( . )m t m QmQ Q F+ ∇ =V         (8) 
 
where p is the pressure, φ is the geopotential and g is the acceleration due to 

gravity. , ,U V W and Θ are the flux form variables that include a map-scale factor, 

m . 

i.e. ( , , )U V Wμ= =V v ; ( ) /U u mμ= ; ( ) /V v mμ= ; ( ) /W w mμ=  

and / mμθΘ =  

 
mQ  represents the mass of scalar variables (i.e. mass of water vapor, cloud water, 

rain, etc.). Px , yP , and Pη are the pressure gradient terms, and UF , VF , WF , F Θ , 

and QmF are the forcing terms arising from model physics, turbulent mixing, 

spherical projections, and the Earth’s rotation respectively. The subscripts – x , 

y ,η , and t – in the above equations denote partial differentiation. 

 
The diagnostic relation for the full pressure is expressed as: 
 

0 0( / )c
d m dp p R pθ α=         (9) 

 
where 0p  is the reference pressure (typically 105 Pascals), dR is the gas 

constant, dα is the inverse density of the dry air and c =1.4 (ratio of the heat 

capacities for dry air).  

 
Eq. (2) to (9) are solved in the dynamics solver. The interested reader is referred to 

Skamarock  and Klemp (2008) for more details. A time-split integration scheme is 

used for the temporal discretization. The slow or low-frequency (meteorologically 

significant) modes are integrated using a third order Runge-Kutta time integration 

scheme, while the high frequency acoustic modes are integrated over smaller time 
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steps. The time-split integration for these flux form equations is described in Klemp 

et al.(2007).  

 
A set of physics packages is used in WRF and these packages are divided into several 

categories, each containing several choices. The physics categories are as follows: (1) 

microphysics, (2) cumulus parameterization, (3) planetary boundary layer (PBL), (4) 

land-surface model and (5) radiation. More information on physics schemes used in 

WRF is available at http://www.mmm.ucar.edu/wrf/users/docs/wrf-phy.html. An 

interface between the physics packages and the dynamics solver has been designed to 

provide a user-friendly environment to either use a scheme selected from the existing 

categories or to add new other physics packages. 

 
A fully coupled “online” WRF-Chemistry (WRF-Chem) package (Grell et al., 2005) 

with a passive transport option (i.e. without chemical mechanisms and deposition) is 

used together with the WRF core model (WRF 3.0 version used here) to simulate the 

tracer distribution. The term “online” means that the tracer transport is carried out 

simultaneously with the meteorological variables at each time step while using the 

same transport scheme, the same grid (both horizontal and vertical components) and 

the physics schemes. The surface fluxes are added to the lowest vertical level of the 

WRF grid at each simulation time step. The “tagged” tracer option in the model 

allows for the separation of tracers from different sources (e.g. anthropogenic, 

biospheric, oceanic etc).  

2.1.2 STILT model 
 
The STILT is a stochastic Lagrangian Particle Dispersion Model (LPDM) which has 

been used extensively in regional simulations and inversion studies for different 

greenhouse gases (Gerbig et al., 2003; Göckede et al., 2010; Gourdji, 2010; Lin et al., 

2004; Miller et al., 2008). STILT is based on the source code from the Hybrid Single-

Particle Lagrangian Integrated Trajectory (HYSPLIT) system (Draxler and Hess, 

1998), but with a different turbulent scheme (Lin et al., 2003). A detailed description 

of the STILT model is given in Lin et al. (2003) and the source code is available at 

http://www.bgc-jena.mpg.de/bgc-systems/projects/stilt/. 

 
The turbulent flow in STILT is modeled as a Markov chain. The velocity vector 

u can be decomposed as follows: 



Model overview                                                                                                                      Chapter 2 
 

 34 

'= +u u u                    (10) 
 
where u is the mean component and 'u is the turbulent component of the velocity 

vector. Based on the Markov assumption, ′u is expressed as: 

 

'( ) ( ) ' ''( )t t R t t+ Δ = Δ +u u u                  (11) 
 
where ''u is a random vector drawn from a normal distribution with a width equal to 

the variance of the random velocity, tΔ  is the time step and R  is an autocorrelation 

coefficient which determines the standard random walk for the turbulent velocity 

components for each time step (see Lin et al. (2003) and Chapter 5 for more details). 

 
The main purpose of using STILT is to derive the sensitivity of the atmospheric 

mixing ratio measurements to the upstream surface-atmosphere fluxes (footprints). 

The model simulates ensembles of virtual particles representing air parcels of equal 

mass, transported backward in time from an observation point by mean winds and 

sub-grid turbulent winds. The wind fields (vertical profiles of both horizontal and 

vertical wind components) generated by either WRF or ECMWF are used in STILT 

to drive the particles starting from a receptor location. The resulting back trajectories 

are used to calculate the footprints. The footprints derived from the STILT model are 

used as an adjoint of the transport model, which is needed for the inverse system (see 

Chapters 5 and 6 for more details). These footprints are then mapped to the high-

resolution surface fluxes as well as initial fields of CO2 concentrations (see Sect. 2.2 

and 2.4) in order to obtain the simulated CO2 concentrations at the receptor location.  

 
As in WRF and ECMWF, STILT also uses the terrain-following vertical coordinate 

system (more specifically “sigma-height”) with coefficients that are calculated using 

the terrain height, pressure, and temperature fields provided either by WRF or 

ECMWF. The vertical coordinate used in STILT, σ , is defined as: 

 
top msl

top gl

z z
z z

σ −
=

−
                  (12) 

where topz is the model top height, mslz is the height of the model level and glz is the 

height of the model terrain. The height of the planetary boundary layer (PBL) is 

calculated internally in STILT using profiles of atmospheric variables (temperature 
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and wind) and their gradients provided by other models (e.g. WRF, ECMWF). STILT 

also provides an option to use PBL height simulated from external sources.  

 
For coupling STILT with WRF, the WRF source code is modified to generate the 

additional meteorological variables required to drive STILT (Nehrkorn et al., 2010). 

The variables simulated by WRF at η  levels are linearly interpolated in height from 

η  levels to σ  levels. The reader is referred to Nehrkorn et al. (2010) for more details 

on the coupling between WRF and STILT. 

2.2 Biosphere model 
 
A diagnostic model, the Vegetation Photosynthesis and Respiration Model (VPRM), 

which combines remote sensing, meteorological and tower flux data (Mahadevan et 

al., 2008) is used to generate biospheric fluxes. Together with measured or simulated 

meteorological variables, the VPRM utilizes satellite estimates of the Enhanced 

Vegetation Index ( EVI ) and the Land Surface Water Index ( LSWI ) to calculate the 

Net Ecosystem Exchange ( NEE ) at high temporal and spatial resolutions. These 

satellite estimates are based on the measurements from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites operated 

by the National Aeronautics and Space Administration (http://modis.gsfc.nasa.gov/). 

A detailed description of the VPRM model is given in Mahadevan et al. (2008). 

 

VPRM has a simple mathematical structure with a minimal number of model 

parameters. The basic structure of the VPRM model is depicted in Fig. 2.3. The 

vegetation cover in the model domain is represented by the SYNMAP data (Jung et 

al., 2006) with a spatial resolution of 1 km. The VPRM uses 5 vegetation classes over 

Europe, consisting of deciduous forest, evergreen forest, mixed forest, grassland, and 

cropland. The model calculates NEE  as a sum of Gross Ecosystem Exchange (GEE ) 

and Respiration ( R eco ). The full VPRM model equation is expressed as: 

 
0(1/ [1 ( / )]) ( )

R
scale scale scale

eco

NEE T P W PAR PAR EVI PAR T
GEE

γ α β= − × × × × + × × + × +     (13) 
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Figure 2.3 Schematic diagram of the Vegetation Photosynthesis Respiration Model (VPRM) 
estimating Gross Ecosystem Exchange (GEE) and Respiration (Reco). The figure is adapted 
from Mahadevan et al. (2008). 
 

where scaleT , scaleP , and scaleW  are scalars for temperature, leaf phenology, and canopy 

water content respectively.  

 
scaleT  is the temperature dependence of the photosynthesis and is expressed as: 

 
min max

2
min max

( ) ( )
[( ) ( )] ( )

scale
opt

T T T TT
T T T T T T

− × −
=

− × − − −
     (14) 

 
where minT , maxT and optT  are minimum, maximum and optimal temperatures for 

photosynthesis respectively and their values are fixed for each vegetation type. T is 

the surface air temperature. The value for T  is taken either from model simulations 

(e.g. WRF simulations) or from site meteorology. scaleT  is set to zero when T  is less 

than minT . 

 
scaleP  is used to account for the effect of leaf age on photosynthesis. Based on 

vegetation types, scaleP  is set to either 1 (e.g. evergreen forest) or computed as a 

function of LSWI (e.g. deciduous forest) with the following relation: 

 
(1 )

2
scale

LSWIP +
=          (15) 
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scaleW is used to account for the effects of water stress and is calculated as follows: 
 

max

(1 )
(1 )

scale
LSWIW

LSWI
+

=
+

        (16) 

 
where maxLSWI is the maximum value of LSWI  during the plant growing season for 

each site. 

 
PAR  is the photosynthetically-active radiation. PAR  (or rather the short-wave 

radiation) can be measured at flux sites or prescribed from model simulations. 0PAR  

is the half-saturation value. 0,, PARγ α , andβ are the adjustable model parameters in 

VPRM and are determined by comparison to the data from eddy covariance 

measurements. This way, the calculation of GEE  in VPRM follows a light use 

efficiency (LUE) approach, where the photosynthetic flux is initially on linear 

relationship with radiation, and then saturates at radiation levels larger than 0PAR . 

2.2.1 Satellite data 
 
The eight-day mean surface reflectance data (MOD09A1) provided by MODIS are 

used in VPRM to calculate EVI  and LSWI .  The MOD09A1 product gives data for 

9 MODIS pixels with a resolution of 1.5 km × 1.5 km. A preprocessing tool 

(http://www.bgc-jena.mpg.de/~rkretsch/vprmpreproc/; hereafter referred to as the 

VPRM preprocessor) was developed to process these satellite data for the 

aforementioned coupled models. The VPRM preprocessor includes software tools 

provided by the MODIS Land Quality Assessment Group (Roy et al., 2002) together 

with projection tool – MODIS Reprojection Tool (MRT) 

(https://lpdaac.usgs.gov/lpdaac/tools/modis_reprojection_tool) – to extract EVI and 

LSWI from the Hierarchical Data Format (HDF), to apply lowess (locally weighted 

least squares) filtering to reduce data noise, and to transform EVI and LSWI  from 

the sinusoidal projection to the mapping projections used in WRF or STILT (Lambert 

Conformal for WRF and Cartesian for STILT).  

2.3 Coupled transport-biosphere models: Eulerian and Lagrangian systems 
 
The transport models described in Sect. 2.1 are coupled to the VPRM to simulate 

biospheric CO2 concentrations (Ahmadov et al., 2007; Matross et al., 2006). The 

resultant modeling systems are termed WRF-VPRM and WRF/STILT-VPRM, where 
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the former represents the Eulerian part and the latter is its Lagrangian counterpart in 

the model-data fusion system (see Fig. 2.1).  Modifications which have been made in 

the original source code for incorporating surface fluxes of CO2 as well as 

initial/lateral boundary conditions of CO2 concentrations are described in Ahmadov et 

al. (2007). The coupling of VPRM with WRF was performed in such a way that 

VPRM calculates CO2 fluxes (i.e. NEE ) using meteorological fields (surface 

temperature and short-wave radiation) simulated by WRF and then these fluxes are 

passed to WRF at each time step to be transported as a tracer (Ahmadov et al., 2007; 

Ahmadov et al., 2009). The STILT is coupled offline with VPRM to generate the CO2 

concentration at the receptor. The footprints generated by STILT are multiplied by 

CO2 fluxes simulated by VPRM. More details on these coupled models are provided 

in Chapter 5. The surface fluxes and the initial/boundary conditions used are 

described in Sect. 2.4. 

2.4 Initial/lateral boundary conditions and surface fluxes 
 
The initial/lateral boundary conditions of the meteorological variables, the sea surface 

temperature (SST) and the soil initialization fields of each run are prescribed from the 

ECMWF model simulations (http://www.ecmwf.int) with a spatial resolution of about 

20 km and 6-hourly temporal intervals. Global CO2 concentration fields based on a 

simulation by an atmospheric tracer transport model, the TM3 (Heimann and Körner, 

2003) is used to represent the initial/lateral boundary conditions of CO2. These 

analyzed fields, with a spatial resolution of 4° × 5°, 19 vertical levels and a temporal 

resolution of 3 hours, are available at: http://www.bgc-

jena.mpg.de/~christian.roedenbeck/download-CO2-3D/.  Fossil fuel emission data 

from an inventory provided by the Institut für Energiewirtschaft und Rationelle 

Energieanwendung (IER), University of Stuttgart (http://carboeurope.ier.uni-

stuttgart.de/) at a spatial resolution of 10 km are used to account for anthropogenic 

fluxes. The ocean fluxes are included for the simulations presented in Chapter 3, and 

these fluxes are prescribed from the monthly air-sea fluxes from Takahashi et al. 

(2002). The biospheric fluxes are simulated at a high spatial resolution (e.g. 2 km, 6 

km and 10 km) and are used to account for CO2 uptake and release from different 

biomes (see section 2.2). 
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2.5 Inversion system 
 
The inverse system is used to derive biosphere-atmosphere exchange on regional 

scales from CO2 concentration measurements, such as those made from tall towers. 

The system uses the Bayesian inversion technique which utilizes a priori knowledge 

of fluxes generated from VPRM. The scaling factors of GEE  and R eco  will be 

further optimized as given by Gerbig et al. (2003), to match the atmospheric 

constraint imposed by the concentration measurements via the inversion technique. 

The inversion also takes into account the potential uncertainties including 

uncertainties in a priori fluxes, measurement and transport. The inversion theory and 

technique are described in detail in Chapter 6. 
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3 High-resolution modeling of CO2 over Europe: Implications for 
representation errors of satellite retrievals 

 
Abstract 

Satellite retrievals for column CO2 with better spatial and temporal sampling are 

expected to improve the current surface flux estimates of CO2 via inverse techniques. 

However, the spatial scale mismatch between remotely sensed CO2 and current 

generation inverse models can induce representation error, which can cause 

systematic biases in flux estimates. This study is focused on estimating the 

representation error associated with utilization of satellite measurements in global 

models with a horizontal resolution of about 1 degree or less. Simulated CO2 fields 

are used for the analysis and those are generated from the high-resolution modeling 

framework WRF-VPRM, which links CO2 fluxes from a diagnostic biosphere model 

to a weather forecasting model at 10 km × 10 km horizontal resolution. Sub-grid 

variability of column averaged CO2, i.e. the variability not resolved by global models, 

reached up to 1.2 ppm with a median value of 0.4 ppm. Statistical analysis of the 

simulation results indicate that orography plays an important role. Using sub-grid 

variability of orography and CO2 fluxes as well as resolved mixing ratio of CO2, a 

linear model can be formulated that could explain about 50 % of the spatial patterns 

in the systematic (bias or correlated error) component of representation error in 

column and near-surface CO2 during day- and night-times. These findings give hints 

for a parameterization of representation error which would allow for the 

representation error to be taken into account in inverse models or data assimilation 

systems.  

3.1 Introduction 
 
Atmospheric CO2 has been rising since pre-industrial times due to anthropogenic 

emissions from fossil fuel combustion and deforestation, which are considered to be 

major causes of global warming (IPCC, 2007). Climate predictions using coupled 

carbon cycle climate models differ greatly in their feedbacks between the biosphere 

and climate, resulting in vastly differing mixing ratios of CO2 at the end of this 

century (Friedlingstein et al., 2006). This calls for an improved understanding of 

biospheric CO2 fluxes at regional scales. A global network of observations is being 
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 used together with modeling tools to derive surface-atmosphere exchanges (via 

inverse techniques) which can help in quantifying biosphere-climate feedback and 

assist in monitoring CO2 trends in the context of climate change mitigation. 

 
However, past studies show that the current observation network is not sufficient to 

adequately account for uncertainties in surface flux estimates (Gurney et al., 2003). 

Satellite measurements of column-integrated CO2 concentrations with better spatial 

and temporal sampling as well as with adequate precision (~1 ppm) are expected to 

improve this situation (Rayner and O'Brien, 2001; Miller et al., 2007). Passive 

satellite missions, such as the Orbiting Carbon Observatory (OCO) (Crisp et al., 

2004), and the Greenhouse gases Observatory Satellite (GOSAT) (NIES, 2006) are 

designed to measure column integrated dry air mole fraction under clear sky 

conditions using reflected sunlight.  GOSAT is now in orbit, but unfortunately the 

launch of OCO failed. In addition, active sensor missions are under investigation, 

such as ESA’s Earth Explorer candidate mission A-SCOPE, the Advanced Space 

Carbon and Climate Observation of Planet Earth (ESA, 2008) and NASA’s mission 

ASCENDS, the Active Sensing of CO2 Emissions over Nights, Days and Seasons , 

which have the advantage of  also being able to measure during the night and thus 

provide a stronger constraint on respiration fluxes.  

 
The above mentioned satellite measurements are able to provide global coverage of 

column-averaged CO2 dry air mole fraction which can improve current estimates of 

global carbon budgets (via inverse techniques). The footprint sizes of satellite 

missions using passive sensors (measuring reflected sun light) such as OCO and 

GOSAT are approximately 1.3 km and 10.5 km respectively (Crisp et al., 2004; 

NIES, 2006). Active missions such as A-SCOPE using LIDAR technology, have 

smaller footprint sizes of around 0.1 km which allows for better sampling under 

partially cloudy conditions by making use of the cloud gaps (ESA, 2008). However, 

active missions need some averaging for these 0.1 km footprints to improve the 

signal-to noise. These footprints are at least an order of magnitude smaller than the 

highest resolution global inverse models (Peters et al., 2007).  

 
All remote sensing methods to measure atmospheric CO2 require clear sky 

conditions, thus a small footprint is desirable since it allows sampling during 

scattered cloud conditions. On the other hand, the retrievals may not be representative 
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for average CO2 concentration in such coarse model grids, and may thus introduce a 

larger representation error (a spatial mismatch of satellite retrievals within larger grid 

cells). The representation error is expected to depend on the strength and horizontal 

extent of CO2 flux variability and on meteorology, both of which influence the 

variability in atmospheric CO2. Previous studies show that the representation error 

increases with decreasing horizontal resolution (Gerbig et al., 2003) and is higher 

when mesoscale circulation is important (Tolk et al., 2008; Ahmadov et al., 2007). 

Based on measurements from airborne platforms during the CO2 Budget and 

Rectification study (COBRA-2000), Gerbig et al. (2003) concluded that transport 

models require a horizontal resolution smaller than 30 km to capture important spatial 

variability of CO2 in the continental boundary layer, which could be attributed to the 

spatial variability of surface fluxes. The representation error corresponding to typical 

global grid cells can be up to 1 to 2 ppm, which is an order of magnitude larger than 

the sampling errors (Gerbig et al., 2003). The sampling error referred in Gerbig et al., 

2003 includes both limitations in instrument precision and accuracy and uncertainty 

caused by unresolved atmospheric variability of CO2 within the mixed layer due to 

turbulent eddies.  Further, topography plays a role in representation error. It is 

reported that representation error induced by small scale orographic features can be as 

large as 3 ppm at scales of 100 km (Tolk et al., 2008). van der Molen and Dolman  

(2007), in their case study around Zotino in Central Siberia, showed that topographic 

heterogeneity of 500 m within a spatial scale of  200 km can generate horizontal 

gradients in CO2 concentrations of 30 ppm. Hence it is highly important to address 

representation error caused by these spatial mismatches, also for column-integrated 

measurements from remote sensing, prior to the quantitative assimilation of the 

information into global modelling systems.  

 
There are a number of studies which have estimated the representation error within a 

model grid cell when using satellite column measurements. Based on high-resolution 

CO2 simulations, taking the difference between the simulated grid cell mean and the 

sampled mean, Corbin et al. (2008) estimated the representation error over North and 

South America and concluded that satellite retrievals cannot be used in current 

inverse models to represent large regions with significant CO2 variability unless 

transport models are to be run at high resolution. Alkhaled et al. (2008) estimated the 

representation error based on statistical methods, using spatial covariance information 
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of CO2 based on model simulation of global CO2 distribution at a spatial scale of 2o × 

2.5o over the sampled regions together with information about the retrieved soundings 

without the knowledge of the true mean value. Representation error is quantified 

using a hypothetical transport model with a spatial resolution of 1o × 1o and a 3 km2 

retrieval footprint. 

 
This study focuses on estimating possible representation error of column mixing 

ratios from remote sensing in global transport models, and on the causes of the spatial 

variability of CO2 within a grid cell. Spatial variability of CO2 is assessed 

quantitatively based on high-resolution simulations for a domain centered over 

Europe. Using a high-resolution transport model, coupled to surface-atmosphere 

fluxes of CO2, allows accounting for mesoscale phenomena such as land-sea breeze 

effects (Ahmadov et al., 2007).   Such effects can not be represented in a statistical 

method as deployed by Alkhaled et al. (2008). Possible representation error is 

estimated as the sub-grid variability of near surface CO2 and column averages of CO2 

within typical global model grid cells. Hypothetical A-SCOPE track data are used 

with MODIS cloud pixel information to realistically represent satellite observations. 

In this context it is relevant to see the possibility of a sub-grid parameterization 

scheme based on resolved variables to capture the representation error. Such a 

parameterization scheme could pave the way to describing representation error in 

coarser models without using high-resolution simulations.  

 
 The outline of this chapter is as follows: Section 3.2 provides a brief overview of the 

modeling framework which is used to simulate the CO2 fields. Section 3.3 presents 

the methodology adopted to estimate representation error associated with utilizing 

satellite column measurements in global inversion studies. In Sect. 3.4, statistical 

analyses of sub-grid variability of CO2 fields within grid cells of 100 km × 100 km 

size are presented to estimate possible representation error for retrieved satellite 

column mixing ratios. The correlations of sub-grid variability with resolved variables 

are investigated to assess the possibility of parameterization schemes for 

representation error in coarser models. 

3.2 Modeling framework 
 
The modeling system, WRF-VPRM (Ahmadov et al., 2007), which combines the 

Weather Research and Forecasting model, WRF (http://www.mmm.ucar.edu/wrf/), 
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with a diagnostic biosphere model, the Vegetation Photosynthesis and Respiration 

Model, VPRM (Mahadevan et al., 2008) is used. The coupling of these models is 

done in such a way that VPRM utilizes near surface temperature (T2) and short wave 

radiation (SNDOWN) from WRF in order to compute CO2 fluxes and to provide 

these to WRF to be transported as a passive tracer.  

 
The principal component of the modelling system consists of a mesoscale transport 

model, WRF, using the passive tracer transport option from WRF-Chem (Grell et al., 

2005) to simulate the distribution of CO2 transported by advection, convection and 

turbulence. Some modifications were made in order to implement simulations of CO2 

transport, which are described in detail in Ahmadov et al. (2007). An overview of the 

WRF physics/dynamics options used for the simulations is given in Table 3.1.  
 
Table 3.1  An overview of the WRF physics/dynamics options used. 
 
Vertical coordinates 
 

Terrain-following hydrostatic pressure vertical coordinate 

 
Basic equations Non-hydrostatic, compressible 

 
Grid type 
 

Arakawa-C grid 

 
Time integration 
 

 
3rd order Runge-Kutta split-explicit 

Spatial integration 
 

3rd and 5th order differencing for vertical and horizontal 
advection respectively; both for momentum and scalars 
 

Time step 
 

60 sec 

 
 
Domain configuration 
 

 

1 domain with horizontal resolution of 10 km; 

size 2500 × 2300 km;  31 vertical levels; 
 

 
 
 
 
 
Physics schemes 
 

 

Radiation - Rapid Radiative Transfer Model (RRTM) Long 

wave and Dudhia; 

Microphysics - WSM 3-class simple ice scheme; 

Cumulus - Kain-Fritsch (new Eta) scheme (only for the coarse 

domain) 

PBL – YSU; Surface layer – Monin-Obukhov 

Land-surface – NOAH LSM 
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The satellite-constrained biosphere model, VPRM is used here to account for CO2 

uptake and emission for different biomes. It is a diagnostic model which uses MODIS 

(http://modis.gsfc.nasa.gov/) satellite indices, the Enhanced Vegetation Index ( EVI ), 

and the Land Surface Water Index ( LSWI ) at 500 m resolution to calculate hourly 

Net Ecosystem Exchange ( NEE ). NEE  is calculated here as a sum of Gross 

Ecosystem Exchange (GEE ) and Respiration ( R eco ). GEE  is calculated by using 

EVI  and LSWI from MODIS, and temperature at 2 m (T2) and shortwave radiation 

fluxes (SNDOWN), provided by WRF. R eco is calculated as a linear function of 

WRF-simulated temperature (Mahadevan et al., 2008). To represent land cover in 

VPRM, a global land cover product – SYNMAP (Jung et al., 2006)  –  is used with a 

spatial resolution of 1 km and 8 vegetation classes which are suitable for the 

European domain. The VPRM parameters which control the CO2-uptake by 

photosynthesis and the CO2-emission by respiration for each vegetation class have 

been optimized using  eddy flux measurements for different biomes in Europe 

collected during the CarboEurope IP experiment (for details see Ahmadov et 

al.(2007). VPRM captures the spatiotemporal variability of biosphere-atmosphere 

exchange remarkably well, as shown by comparison with various flux measurements 

sites corresponding to different vegetation types for longer periods (Ahmadov et al., 

2007; Mahadevan et al., 2008). GEE  and R eco  computed in VPRM is passed on to 

WRF to simulate the distribution of total CO2 concentration. 

 
In addition to VPRM biospheric fluxes, anthropogenic and ocean fluxes are included 

in WRF. High-resolution fossil fuel emission data from Institut für Energiewirtschaft 

und Rationelle Energieanwendung (IER), University of Stuttgart 

(http://carboeurope.ier.uni-stuttgart.de/) are used for the year 2000, at a spatial 

resolution of 10 km. Temporal emission patterns were preserved by shifting the  IER 

data for 2000 by a few days to match the weekdays in 2003. The total mass of the 

emissions was conserved when mapping onto the WRF grid.  To account for ocean 

fluxes in WRF, the monthly air-sea fluxes from Takahashi et al. (2002) are used.  

 
Initial and lateral tracer boundary conditions are prescribed from global CO2 

concentration fields based on a simulation by a global atmospheric Tracer transport 

model, TM3 (Heimann et al., 2003), with a spatial resolution of 4° × 5°, and a 

temporal resolution of 3 hours. TM3 is driven by re-analyzed meteorological data 
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from NCEP and surface fluxes optimized by atmospheric inversion (Rödenbeck et al., 

2003).  As initial and lateral meteorological boundary conditions for WRF, analyzed 

fields from ECMWF (http://www.ecmwf.int/) with a horizontal resolution of 

approximately 35 km and a 6-hour time step are used. The model setup largely 

follows the TransCom-continuous protocol (Law et al., 2008), allowing for a 

comparison of the mesoscale simulation with a number of measurement sites, but also 

with a large number of global models used for inversion studies. Note, however, that 

the anthropogenic and the biospheric fluxes are different from the ones used within 

the TransCom-continuous Experiment.  

 
Mesoscale simulations are carried out for 2 to 30 July 2003 (29 days of data in total), 

with a horizontal resolution of 10 km (hereafter referred to as “fine-scale”), and 30 

vertical levels extending from the surface up to about 100 hPa for a domain centered 

over Europe (Fig. 3.1). Each day of simulation starts at 18 UTC of the previous day, 

and continues for 30 hours, of which the first 6 hours are used for spin up. These fine-

scale simulations attempt to reproduce the atmospheric tracer distribution on scales 

much closer to the actual footprint of remote sensing instruments (~0.1 to 10 km). 

Model validation has been carried out at a number of measurement sites, and also in 

comparison with output from TransCom models which are used for global inversion 

studies. Table 3.2 shows a summary of statistics of the WRF-VPRM simulation 

compared to measurements, along with results from two other models used in the 

TransCom-continuous Experiment, the global model TM3 and the regional model 

REMO (Chevillard et al., 2002). WRF-VPRM performs reasonably well in 

comparison to other models for most of the measurement sites, indicated by a high 

fraction of explained variance (squared correlation coefficient, R2), but also, more 

importantly in the context of this study, a quite realistic representation of the 

variability with relative standard deviations (ratio of modeled to observed standard 

deviation) close to unity for most sites. However note that the variability is poorly 

represented when blending the high-resolution fluxes used in WRF (VPRM and IER 

emissions) with the coarse fluxes used in the TransCom continuous experiment 

(CASA biospheric fluxes and fossil98 emissions at 1° × 1° resolution); in this case 

the performance is comparable to REMO also in terms of relative standard deviations 

(not shown in the table). 
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Table 3.2  Statistics for the comparison of WRF-VPRM simulations to measurements, along 
with results from two transport models used in the TransCom Continuous experiment. 
 
Squared correlation coefficient, R2 
 Model  

[Horizontal Resolution] 
 

 Station WRF-VPRM 
[10 km × 10 km] 

REMO 
[0.50 × 0.50] 

TM3_vfg 
[1.8750 × 1.8750] 
 

  
 Heidelberg 

 
0.29 

 
0.48 

 
0.37 

 Hegyhatsal 48m 0.44 0.35 0.28 
 Hegyhatsal 115 0.41 0.48 0.25 
 Schauinsland 0.16 0.07 0.06 
 Mace Head 0.24 0.48 0.29 
 Monte Cimone 0.38 0.13 0.17 

Ratio of modeled to measured standard deviation 
 Model  

[Horizontal Resolution] 
 

 Station WRF-VPRM 
[10 km × 10 km] 

REMO 
[0.50 × 0.50] 

TM3_vfg 
[1.8750 × 1.8750] 
 

 
 Heidelberg 

 
0.95 

 
2.72 

 
1.03 

 Hegyhatsal 48m 1.21 2.75 1.64 
 Hegyhatsal 115 1.19 1.61 1.28 
 Schauinsland 0.99 0.92 0.82 
 Mace Head 0.6 1.02 0.79 
 Monte Cimone 1.82 0.65 0.79 
 

3.3 Methodology 

3.3.1 Calculating representation error for satellite-derived CO2 columns  
 
Since satellite measurements represent column averages, mass weighted average 

column CO2 mixing ratios are calculated from the modeled CO2 fields. Due to the 

differences in the averaging kernel for different space-borne sensors, no specific 

averaging kernel was used. Column averaging excluded the topmost model level in 

order to exclude boundary effects. The average column CO2 mixing ratio is thus 

given by:  
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Here mi is the dry grid cell air mass and CO2,i is the mixing ratio at model level i, and 

nz is the number of levels used. 

 
In this context, the term “representation error” refers to possible discrepancies when 

utilizing satellite information in current global models, due to the spatial scale 

mismatches between satellite retrievals and larger model grids. Representation error 

(σc,col) is thus estimated for every time step (hourly) as sub-grid variability (standard 

deviation of fine-scale CO2,col) within the spatial resolution of current global models. 

The spatial scale of 100 km is chosen to represent the lower limit of grid cell size 

found in global models used for inversions. The calculated column averages do not 

include the entire stratosphere, which amounts to a fraction of 10% of the total 

atmospheric column (pressure at model top is 100 mbar). Since horizontal variability 

of CO2 in the stratosphere on scales below 100 km is small (at least not larger than in 

the troposphere), neglecting this part of the column might thus result at maximum in a 

10% overestimation of the sub-grid variability.  

 
The monthly averaged σc,col (ie, σ־  c,col, specific for a given hour of the day) includes 

random and systematic components of representation error. It is important to assess 

which component of this representation error is purely random, i.e. noise introduced 

by weather, and which part is systematic in nature (the “bias”, or “correlated error” 

term).  Random, uncorrelated errors are expected to decrease when averaging over 

longer time periods, e.g. for deriving monthly fluxes. In order to exclude random 

errors, daily values of CO2 mixing ratios (at a specific time, e.g 14:00 GMT) are 

averaged for the whole month and subsequently estimated sub-grid variability from 

this averaged concentration (ie, σ (CO⎯  2,col) ). This gives a representation error 

(σc,col(bias)) that is purely of systematic nature on a monthly time scale. The term “bias” 

introduced here is defined as the part of the error that is correlated over the timescale 

of a month. Note that the bias component of error is always denoted with subscript 

“(bias)”.  
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In addition to σc,col, near-surface CO2 mixing ratios (CO2,sur) at an altitude of about 

150 m above the surface (the second model level) are also analyzed in terms of sub-

grid variability σc,sur. A similar analysis is again carried out for a spatial resolution of 

200 km (not shown). 

3.3.2 Using A-SCOPE track information including MODIS cloud information  
 
The simulated A-SCOPE sampling track is utilized in order to realistically represent 

satellite retrievals with the model simulations. Temporal resolution of the track is 0.5 

seconds, corresponding to a spatial distance between subsequent samples of 3.5 km 

(F.M Bréon, Laboratoire des Sciences du Climat et de l’Environnement, Personal 

Communication). The samples are initially aggregated to a horizontal resolution 10 

km and these 10 km samples are used for further analysis. Note that this aggregation 

causes the representation error to be underestimated. Since satellite retrievals require 

clear sky conditions, the simulations are sampled for the pixels with clear sky. Cloud 

free conditions are picked up based on MODIS cloud pixel information (http://modis-

atmos.gsfc.nasa.gov/MOD35_L2/index.html) at 1 km resolution for the period of 

simulation. 46438 samples of cloud free columns are extracted including 27605 

samples (60 %) over land.  These samples were aggregated to a spatial scale of 100 

km along the A-SCOPE track. There is an average of 6.6 cloud free 10 km samples 

along the A-SCOPE track within each 100 km grid cell. The representation error for 

A-SCOPE derived CO2 columns (σascope) is calculated as the standard deviations of 

the difference of 100 km × 100 km flight track averages using only A-SCOPE 10 km 

samples along the flight track, and the 100 km × 100 km averages based on all 10 km 

grid cells (σ [A-SCOPE 100 km averages - true 100 km averages]).  

3.4 Results and Discussion 
 
In this section the results based on WRF-VPRM simulations of the distribution of 

atmospheric CO2 in July 2003 are presented. An example of the WRF-VPRM output 

is given in Fig. 3.1, showing simulated (a) CO2,sur and (b) CO2,col on 12 July at 14:00 

GMT. Strong spatial variability of the boundary layer CO2 can be seen near the coasts 

(Fig. 3.1a) due to the 3D-rectification effect (the temporal covariance between sea-

land breeze transport and biosphere-atmosphere fluxes, both of which are radiation 

controlled) (Ahmadov et al., 2007), which causes respired CO2 to be advected over 

the ocean by synoptic winds or by the land-breeze circulation and to be concentrated 
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in a shallow layer due to the lack of vertical mixing over the ocean. There is also 

strong variability associated with frontal activity towards the north-eastern edge of 

the domain, with strong gradients in CO2 associated with the location of a cold front. 

Such behavior has previously been reported (Parazoo et al., 2008), and has been 

attributed to the deformational flow along the fronts. A similar pattern is followed in 

the CO2 column average (Fig. 3.1b) near coasts as well as towards the north-eastern 

edge of the domain, which suggests a strong contribution of boundary layer 

concentrations to column averages. Movies showing the complete simulation can be 

seen at: http://www.bgc.mpg.de/bgc-systems/news/near-surface_co2.html/    and 

http://www.bgc.mpg.de/bgc-systems/news/column_co2.html/  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  WRF-VPRM simulations of CO2 mixing ratios (a) for an altitude of about 150 m 
above ground (2nd model level), CO2,sur and (b)mass weighted average CO2 column,  CO2,col 
during 12th July at 14:00 GMT  with horizontal resolutions of 10 km for a domain centered 
over Europe. An offset of 365 ppm is to be added to get total CO2 in ppm. Note the scale 
change between near surface and column CO2. 

3.4.1 Subgrid variability of near surface and column averages of CO2 
concentrations 

 
Figure 3.2 shows the monthly averaged σc,sur and σc,col (at 14:00 GMT only) for July 

2003. Coastal and mountain regions are distinct, with strong sub-grid variability both 

in near surface and in column averages of CO2 concentrations. This is due to 

relatively strong gradients of surface fluxes in these regions.  

 
The similarity in spatial patterns of σc,col  and σc,sur (Fig(s). 3.2a and 3.2b) indicates 

that the CO2 column values are correlated with surface values. Figure 3.3 shows the 
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profile distribution of monthly averaged (at 14:00 GMT) σc within different bins of 

vertical model levels. Most of the higher values of σc are found to be within the 

lowest 2 km. σc strongly decreases with increasing altitude, showing less influence of  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 3.2  The monthly averaged subgrid variability of CO2 concentrations for: (a) near-
surface, σc,sur and (b) column average, σc,col, for July 2003, using 14:00 GMT only. All values 
are in ppm. 
 
  

 
 

 

 

 

 

 

 

 

 

 
 
Figure 3.3  Box and whisker plot for different altitudes (from ground) ranges of the sub-grid 
concentration variability (σc) for July 2003 (14:00GMT only). Boxes indicate the central 
50%, the bar across the box is the median value, and whiskers indicate the range of the 
central 95% of data points. Individual data points are shown outside the central 95%. 
 

surface fluxes at higher altitudes. These results are consistent with van der Molen and 

Dolman (2007) which shows that the effect of surface heterogeneity is generally 
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observed in lower atmospheric layers. This indicates the dominance of boundary 

layer concentration variability in column averages. These dominances can be 

significant during synoptic scale events, where CO2 column variability is strongly 

correlated (squared correlation coefficient, R2= 0.37) to boundary layer 

concentrations (see Fig. 3.1), but not strongly correlated (squared correlation 

coefficient, R2= 0.12) to concentrations in the free troposphere around 4 km (not 

shown). 

 
The analysis shows that the monthly averaged σc,col for the domain is, on average, 0.4 

ppm, with maximum values around 1.2 ppm and the 90% percentile 0.6 ppm (see Fig. 

3.2). Partitioning the data into ocean and land pixels shows that σc,col is more than 

twice as large over land (0.5 ppm) as compared to over ocean areas (0.2 ppm) as is 

expected due to the stronger magnitude and variability of terrestrial fluxes. This is not 

negligible compared to the targeted accuracy of future satellite retrievals. The 

monthly bias error, σc,col(bias), is smaller than the full error, but shows a similar pattern 

with maximum values around 0.9 ppm for mountain and coastal regions (Fig. 3.4).  

 

 
 

Figure 3.4  The monthly averaged subgrid variability of temporally aggregated CO2 column 
averages (bias) [ppm] for July 2003, using 14:00 GMT only. 
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3.4.2 Representation error for satellite derived CO2 columns 

3.4.2.1 Hypothetical satellite track  
 
Representation error is quantified here using a hypothetical satellite track going 

through each 100 km × 100 km cell. Following the sampling conditions used by 

Alkhaled et al. (2008) (hereafter referred to as A08), two spatial distributions of 

satellite retrievals are assumed: (1) a full North-South swath (10 pixels from south to 

north) in each grid cell (idealized sampling condition), and (2) a single retrieval at the 

corner of each grid cell (adverse sampling condition). The representation error of 

hypothetical satellite-derived CO2 columns (σhypo) is estimated for these two spatial 

distributions of satellite retrievals within each 100 km × 100 km grid cell. Figure 3.5 

shows the distribution of σhypo for a full North-South swath at the center of each 100 

× 100 km grid cell. The σhypo for the previously mentioned sampling conditions are 

estimated and compared with A08 in July for the European domain, and are given in 

Table 3.3.  The larger representation error is seen over land for both sampling 

conditions, and is about a factor of two larger when compared to ocean (see Table 

3.3).  The statistical approach suggested by A08 gives much smoother behaviour 

compared to these results and also neglects land-ocean differences in the European 

 

 
 
Figure 3.5  The subgrid variability of column averages of CO2 concentrations [ppm] based on 
hypothetical north-south swath at the centre of each 100 km grid cell for July 2003 (monthly 
averaged at 14:00 GMT). 
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domain. Under idealized sampling conditions (10 pixel swath), the representation 

error estimates are nearly an order of magnitude larger than those by A08, and under 

adverse sampling conditions (single corner pixel) the estimates are a factor of two 

larger compared to those provided by A08 (Table 3.3). This finding is in line with 

experimental evidence: A08 found agreement between their estimates and 

observation-based estimates from Lin et al. (2004), however the latter were a 

conservative (low-end or lower limit) estimate of subgrid variability. In fact the 

power variogram model used by Lin et al. (2004) underestimated the observed 

variogram estimates by a factor of 3 to 5 at scales smaller than 200 km (see Figure 2 

in Lin et al. (2004)). This corresponds to about a factor of two differences in single 

pixel representation error, which is remarkably similar to the factor found between 

the high-resolution model based estimate and the one provided by A08. This suggests 

that it is not generally possible to extract information about the representation error 

from coarse model simulations as suggested in A08. Such a method is likely to fail in 

cases of mesoscale complexity.  

 
Table 3.3  The possible representation error when using A-SCOPE and hypothetical satellite 
tracks for different sampling conditions. The values given in square brackets indicate 
(monthly bias component). All values are in ppm. 
 
Representation error All Land Ocean (Alkhaled et al., 

2008), EU 
domain* 
 

Hypothetical Satellite 
(Single corner pixel) 
 

0.59 
[0.22] 

 

0.72 
[0.28] 

 

0.35 
[0.09] 

 

0.30-0.40 

Hypothetical Satellite 
(North-South Swath ) 

0.38 
[0.16] 

 

0.46 
[0.20] 

 

0.24 
[0.05] 

 

0.04-0.06 

ASCOPE  0.34 
[0.12] 

 

0.39 
[0.15] 

0.30 
[0.08] 

 

*extracted from (Alkhaled et al., 2008), Fig 2c and 2d for the  domain used here.  
 

3.4.2.2 A-SCOPE 100 km averages 
 
σascope is evaluated using the A-SCOPE satellite track information as described in 

Sect. 3.2. When combining all A-SCOPE samples within each 100 km grid cell, the 

resulting representation error σascope is reduced compared to the single pixel error. 

Note that this is due to the fact that several pixels contribute to each A-SCOPE 
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sample, whose error can partially cancel out. As for the hypothetical satellite tracks, 

larger representation error for A-SCOPE is seen over land (0.4 ppm) as compared to 

over ocean areas (0.3 ppm) (Table 3.3). 

3.4.3  Dependence of representation error on explanatory variables  
 
Knowledge about the size and the spatial and temporal patterns of the representation 

error is expected to improve inverse modeling of satellite data, but this would involve 

using a high-resolution model to estimate the representation error. The goal is to 

construct a linear model based on a subset of those explanatory variables which 

explains a significant fraction of sub-grid variability, and which can be used in the 

context of global inverse modelling to capture the spatiotemporal patterns. Such a 

linear model is the simplest subgrid parameterization scheme for representation error 

in coarser models, only accounting for local effects and neglecting any effects from 

advection of subgrid variability.  

 
Statistical relationships between the representation error and the following variables 

are explored (not shown): the standard deviation of the fluxes (σf), the mean of the 

fluxes ( f ), the absolute mean of the fluxes (| f |), the mean terrain height ( h ), 

standard deviation of the terrain heights (σh) and the mean mixing ratio near the  

 
Table 3.4  The statistical estimation (squared correlation coefficient) of the bias component of 
the representation error (σc(bias)) explained by each variable and the proposed linear model. 
 

Day-time Night-time 
 

 
Explanatory 

Variables Column 
σc,col 

Surface 
σc,sur 

Column 
σc,col 

Surface 
σc,sur 

 
σf 

[μ.moles/m2s-1] 
 

 
0.34 

 
0.66 

 

 
0.09 

 

 
0.13 

σh 
[m] 

 

0.51 
 

0.20 
 

0.59 
 

0.33 
 

c  
[ppm] 

 

0.18 
 

0.09 
 

0.02 
 

0.16 
 

 
Linear model with 

σf,  σh & c  

 
0.63 

 

 
0.67 

 

 
0.63 

 

 
0.46 
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surface ( c ).  c is included since it can be expected that variability is associated with 

the magnitude of the mixing ratios. The analysis showed that the representation error 

is best explained by the variables σh, σf and c  during day-time as well as night-time. 

Hence a linear model is constructed using three variables: σh, σf and c . Table 3.4 

gives the statistical estimation of the variability explained by each of these variables. 

The similar linear model is also applied for σc,sur. The explained variability by each of 

these variables differs between day- and night-time, also between column and near-

surface mixing ratios. The proposed linear models have the same variable structure, 

but different coefficients for the explanatory variables. 

 
Figure 3.6 shows the dependence of σc,col(bias) on each of these variables. Figure 3.6a 

shows a monotonic increase of σc,col(bias) with increasing σf at the 100 km scale and 

explains 34% of σc,col(bias) during day-time, however the relationship with σf is absent 

during night-time (Fig. 3.6d). It is found in general that σc(bias) is well explained by σf 

(34% of the total column variability and 66% of the surface variability) during day-

time; however correlations are weaker during night-time (Table 3.4). This can be 

explained as follows: the fluxes are larger and more spatially variable during daytime 

than during nighttime. In addition, strong vertical mixing during day-time couples the 

mixing ratios over a deeper part of the column to the patterns in surface fluxes, while 

during night there is less vertical mixing, with more advection and drainage flow in 

the stable nocturnal boundary layer, smearing out the signatures from patchy surface 

fluxes.  

 
The effect of heterogeneity in topography on σc,col(bias) can be seen in Fig(s). 3.6b and 

3.6e. σc,col(bias) increases in response to increase in σh and explains good fraction (51-

59%) of sub-grid variability of mixing ratios. Nocturnal σc,sur(bias) is more correlated 

with σh (33%), rather than day-time σc,sur(bias) (20%) (see Table 3.4; not shown the 

Figure). This shows that topography has more influence on representation error of 

CO2 concentrations in the lower boundary layer during night when transport is more 

dominant than surface flux variability c  is negatively correlated with σc,col(bias) during 

day-time (see Table 3.5) and explains 18% of variability, whereas the correlation is 

absent during night-time (Fig(s). 3.6c and 3.6f). In contrast to this, the correlation of 

c  with σc,surl(bias) is absent during day-time, but explains 16% of nocturnal variability 

(Table 3.4). 

 



 Implications for representation errors of satellite retrievals                                            Chapter 3 
 

 60 

 
Figure 3.6  Distribution of the bias component of column CO2 sub-grid variability (σc,col(bias)) 
on (a, d) σf, (b, e) σh, (c, f) c  for July 2003 [(a)-(c):14:00GMT only, (d)-(f): 02:00GMT 
only]. Boxes indicate the central 50%, the bar across the box the median, and whiskers the 
central 95%. Individual data points are shown outside the central 95%. 
 
The linear model using all three variables explains about 50 % of the spatial patterns 

in the (monthly) bias component of sub-grid variability during day- and night-times 

(Table 3.4). It is found that nocturnal σc,sur is better explained (60% in comparison to 

46%) by the linear model when including the variable f , however no further 

improvements for σc,col or day-time σc,sur  are found (not shown).  Figure 3.7 

illustrates how well the representation error is captured with the proposed linear 

model. It seems therefore possible to introduce this parameterization of representation 

error in coarser models so that data assimilation systems using coarser transport 

models can use realistic estimates for representation error that have the appropriate 

spatial and temporal dependence. Table 3.5 gives the linear model coefficients for 
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each of these explanatory variables. Note that coefficients are horizontal scale 

dependent, and it is expected them to also vary between seasons due to differences in 

flux patterns and transport characteristics. 

 
Table 3.5.  Coefficients of the linear model for the monthly bias component of the 
representation error (σc(bias)). The standard errors of the coefficients are given in italics. 
 

Day-time Night-time 
 

 

 
Column 
σc,col 

× 10-2 

 
Surface 
σc,sur 

× 10-2 

 
Column 
σc,col 

× 10-2 

 
Surface 
σc,sur 

× 10-2 

 
 

Resolution 
[km × km] 

 

 
100 

 

 
200 

 
100 

 
200 

 
100 

 
200 

 
100 

 
200 

 

σf 
[μ.moles/ 

m2s-1] 
 

 
1.2 

0.15 

 
1.7 

0.32 

 
26.5 
1.03 

 

 
34.1 
2.00 

 
-0.01 
0.60 

 
0.81 
1.35 

  
12.6 
10.17 

 
28.6 

18.91 

σh 
[m] 

 

0.04 
0.00 

0.04 
0.00 

0.07 
0.02 

0.05 
0.03 

0.05 
0.00 

 

0.05 
0.00 

0.50 
0.03 

0.40 
0.05 

c  
[ppm] 

 

-0.47 
0.07 

-0.40 
0.16 

0.38 
0.47 

 

0.10 
1.02 

-0.58 
0.09 

 

-0.91 
0.23 

16.2 
1.50 

17.4 
3.26 

Intercept 
[ppm] 

 

8.5 
0.58 

11.6 
1.58 

19.3 
4.16 

 

26.7 
9.85 

10.9 
0.77 

17.1 
2.04 

-27 
13.05 

-18 
28.64 

 

The implementation of the proposed parameterization scheme in global models 

requires these three explanatory parameters: σh can be easily calculated from any 

high-resolution topographic elevation data, for example USGS GTOPO dataset 

(http://eros.usgs.gov/products/elevation/gtopo30.php). The information on fluxes (σf) 

can be accessed from biosphere models with high spatial resolution, e.g VPRM. c  is 

represented in global model simulations or from the satellite retrievals. However, care 

has to be taken to remove long-term trends and seasonal cycles when simulating 

longer periods, otherwise representation error estimates would be falsely influenced 

by these. Such a simple parameterization would reduce the impact of representation 

error significantly, although an inverse modeling study would be required to 

investigate the reduction of the impact on flux retrievals.  
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Figure 3.7  The linear model (bias) estimates of representation error (X-axis) compared to the 
values from the WRF-VPRM simulations (Y-axis) for (a,c)column averages, σc,col(bias) and 
(b,d)near-surface, σc,sur(bias) for July 2003 [(a)-(b):14:00GMT only, (c)-(d): 02:00GMT only]. 
The 1:1 line is shown in blue. 
 

3.5 Summary and Outlook 
 
Satellite retrievals of column CO2 provide a global coverage of measurements; these 

often correspond to small footprints of the order of a few kilometers or less. The 

analysis of high-resolution WRF-VPRM fields of CO2 show that when these column 

retrievals representing small spatial scales are used in inverse studies with current 

global transport models with grid sizes of 100 km, the scale mismatches can 

introduce representation error of up to 1.2 ppm, which is above the targeted precision 

of most satellite measurements. This leads to a systematic bias in flux estimates when 

using inverse modeling approaches. 
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Compared to estimates based on variogram analysis of coarse models (Alkhaled et 

al., 2008), representation error for a full swath of 10 km width of a hypothetical 

satellite (idealized sampling condition)  was found to be nearly an order of magnitude 

larger. This clearly shows the necessity of using high-resolution simulations to assess 

variability on scales not resolved by global models.  The analysis with A-SCOPE 

track data together with MODIS cloud pixel information shows a larger 

representation error (0.39 ppm) over land compared to other regions. 

 
Furthermore, an attempt is made to model sub-grid scale variability (or representation 

error) as a linear function of local, grid-resolved variables. A linear model is 

constructed separately for day- and night-times as well as for column and near-

surface, which has the same variable structure (σh, σf and c ), but different 

coefficients for the explanatory variables. The proposed linear model (using all three 

variables) could explain about 50 % of the spatial patterns in the bias component of 

sub-grid variability during day- and night-times. These findings suggest a 

parameterization which would enable a substantial fraction of the representation error 

to be taken into account more quantitatively. 

 
Future steps are to implement this parameterization in an inverse modeling system 

and to assess, using pseudo-data experiments, to what degree biases in retrieved 

fluxes due to representation error can be avoided. A further refinement of the method 

will be to treat the subgrid variance as a tracer itself, allowing for advection of 

subgrid variance within the coarse transport models similar to the study by Galmarini 

et al. (2008), with the difference that the focus is not on micro-scale, but rather on 

mesoscale variability. This would allow for a better description of the representation 

error over the ocean near the coasts, which with the current linear (local) model 

cannot be described. When including such a realistic description of the representation 

error into a data assimilation system that uses remotely-sensed column CO2, it is 

expected that the retrieved information, such as regional carbon budgets and 

uncertainties thereof, will improve significantly.  

 

 

 



 Implications for representation errors of satellite retrievals                                            Chapter 3 
 

 64 

3.6 References 
 
Ahmadov, R., Gerbig, C., Kretschmer, R., Koerner, S., Neininger, B., Dolman, A. J., 
and Sarrat,C.: Mesoscale covariance of transport and CO2 fluxes: Evidence from 
observations and simulations using the WRF-VPRM coupled atmosphere-biosphere 
model, J. Geophys. Res.Atmos., 112, D22107, doi:22110.21029/22007JD008552, 
2007. 
 
Alkhaled, A. A., Michalak, A. M., and Kawa, S. R.: Using CO2 spatial variability to 
quantify representation errors of satellite CO2 retrievals, Geophys. Res. Lett., 35, 
L16813, doi:10.1029/2008GL034528, 2008. 
 
Chevillard, A., Karstens, U., Ciais, P., Lafont, S., and Heimann, M.: Simulation of 
atmospheric CO2 over Europe and western Siberia using the regional scale model 
REMO, Tellus B, 54B, 872–894, 2002. 
 
Corbin, K. D., Denning, A. S., Lu, L., Wang, J.-W., and Baker, I. T.: Possible 
representation errors in inversions of satellite CO2 retrievals, J. Geophys. Res.-
Atmos., 113, D02301, doi:10.1029/2007JD008716, 2008. 
 
Crisp, D., Atlas, R. M., Breon, F.-M., Brown, L. R., Burrows, J. P., Ciais, P., Connor, 
B. J.,Doney, S. C., Fung, I. Y., Jacob, D. J., Miller, C. E., O’Brien, D., Pawson, S., 
Randerson, J.T., Rayner, P., Salawitch, R. J., Sander, S. P., Sen, B., Stephens, G. L., 
Tans, P. P., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., Kuang, Z., 
Chudasama, B., Sprague, G.,Weiss, B., Pollock, R., Kenyon, D., and Schroll, S.: The 
Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., 34, 700–709, 2004. 
 
ESA: European Space Agency Mission Assessment Reports-ASCOPE, online 
available at: http://esamultimedia.esa.int/docs/SP1313-1 ASCOPE.pdf, 2008   . 
 
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., 
Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., 
Kawamiya, M., Knorr, W.,Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., 
Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver, A. J., 
Yoshikawa, C., and Zeng, N.: Climate carbon cycle feedback analysis: Results from 
the C4MIP model intercomparison, J. Climate, 19, 3337–3353, 2006. 
 
Galmarini, S., Vinuesa, J.-F., and Martilli, A.: Modeling the impact of sub-grid scale 
emission variability on upper-air concentration, Atmos. Chem. Phys., 8, 141–158, 
2008, http://www.atmos-chem-phys.net/8/141/2008/. 
 
Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E., Stephens, B. B., 
Bakwin, P. S., and Grainger, C. A.: Toward constraining regional-scale fluxes of CO2 
with atmospheric observations over a continent: 1. Observed spatial variability from 
airborne platforms, J. Geophys. Res.-Atmos., 108, 4756, 
doi:4710.1029/2002JD003018, 2003. 
 
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. 
C., and Eder, B.: Fully coupled online chemistry within the WRF model, Atmos. 
Environ., 39, 6957– 6975, 2005. 



 Implications for representation errors of satellite retrievals                                            Chapter 3 
 

 65

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., 
Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S. M., Fung, I. Y., Gloor, M., Heimann, 
M., Higuchi, K., John, J., Kowalczyk, E., Maki, T., Maksyutov, S., Peylin, 5 P., 
Prather, M., Pak, B. C., Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C.-W.: 
TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and 
sensitivity to transport and prior flux information, Tellus B, 55, 555–579, 2003. 
 
Heimann, M., Koerner, S., Tegen, I., and Werner, M.: The global atmospheric tracer 
model TM3. Technical Reports, Max-Planck-Institut fu¨ r Biogeochemie, 5, 131 p., 
2003. 
 
IPCC: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II 
and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change, edited by: Core Writing Team, Pachauri, R. K., and Reisinger, A., IPCC, 
Cambridge University Press, Cambridge, 104 pp., 2007. 
 
Jung, M., Henkel, K., Herold, M., and Churkina, G.: Exploiting synergies of global 
land cover products for carbon cycle modeling, Remote Sens. Environ., 101, 534–
553, 2006. 
 
Law, R. M., Peters, W., R¨odenbeck, C., Aulagnier, C., Baker, I., Bergmann, D. J., 
Bousquet, P., Brandt, J., Bruhwiler, L., Cameron-Smith, P. J., Christensen, J. H., 
Delage, F., Denning, A. S., Fan, S., Geels, C., Houweling, S., Imasu, R., Karstens, U., 
Kawa, S. R., Kleist, J., Krol, M. C., Lin, S.-J., Lokupitiya, R., Maki, T., Maksyutov, 
S., Niwa, Y., Onishi, R., Parazoo, N., Patra, P. K., Pieterse, G., Rivier, L., Satoh, M., 
Serrar, S., Taguchi, S., Takigawa, M., Vautard, R., Vermeulen, A. T., and Zhu, Z.: 
TransCom model simulations of hourly atmospheric CO2: Experimental overview and 
diurnal cycle results for 2002, Global Biogeochem. Cy., 22, GB3009, 
doi:3010.1029/2007GB003050, 2008. 
 
 Lin, J. C., Gerbig, C., Daube, B. C., Wofsy, S. C., Andrews, A. E., Vay, S. A., and 
Anderson, B. E.: An empirical analysis of the spatial variability of atmospheric CO2: 
Implications for inverse analyses and space-borne sensors, Geophys. Res. Lett., 31, 
L23104, doi:23110.21029/22004GL020957, 2004. 
 
Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., 
Gerbig, C., Munger, J. W., Chow, V. Y., and Gottlieb, E. W.: A satellite-based 
biosphere parameterization for net ecosystem CO2 exchange: Vegetation 
Photosynthesis and Respiration Model (VPRM), Global Biogeochem. Cy., 22, 
GB2005, doi:2010.1029/2006GB002735, 2008. 
 
Miller, C. E., Crisp, D., DeCola, P. L., Olsen, S. C., Randerson, J. T., Michalak, A. 
M., Alkhaled, A., Rayner, P., Jacob, D. J., Suntharalingam, P., Jones, D. B. A., 
Denning, A. S., Nicholls, M. E., Doney, S. C., Pawson, S., Boesch, H., Connor, B. J., 
Fung, I. Y., O’Brien, D., Salawitch, R. J., Sander, S. P., Sen, B., Tans, P., Toon, G. 
C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., and Law, R. M.: Precision 
requirements for space-based XCO2 data, J. Geophys. Res., 112, D10314, 
doi:10.1029/2006JD007659, 2007. 
 
NIES: GOSAT: Greenhouse Gases Observing Satellite, Tsukuba, Japan, 2006. 
Parazoo, N. C., Denning, A. S., Kawa, S. R., Corbin, K. D., Lokupitiya, R. S., and 



 Implications for representation errors of satellite retrievals                                            Chapter 3 
 

 66 

Baker, I. T.: Mechanisms for synoptic variations of atmospheric CO2 in North 
America, South America and Europe, Atmos. Chem. Phys., 8, 7239–7254, 2008,  
http://www.atmos-chem-phys.net/8/7239/2008/. 
 
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, 
K., Miller, J. B., Bruhwiler, L. M. P., P´ etron, G., Hirsch, A. I., Worthy, D. E. J., van 
der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An 
atmospheric perspective on North American carbon dioxide exchange: 
CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–18930, 2007. 
 
Rayner, P. J. and O’Brien, D. M.: The utility of remotely sensed CO2 concentration 
data in surface source inversions, Geophys. Res. Lett., 28, 175–178, 2001. 
 
Roedenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: CO2 flux history 
1982–2001 inferred from atmospheric data using a global inversion of atmospheric 
transport, Atmos. Chem. Phys., 3, 1919–1964, 2003, http://www.atmos-chem-
phys.net/3/1919/2003/. 
 
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., 
Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: 
Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal 
biological and temperature effects, Deep-Sea Res. II, 49, 1601–1622, 2002. 
 
Tolk, L. F., Meesters, A. G. C. A., Dolman, A. J., and Peters, W.: Modelling 
representation errors of atmospheric CO2 mixing ratios at a regional scale, Atmos. 
Chem. Phys., 8, 6587–6596, 2008, http://www.atmos-chem-phys.net/8/6587/2008/. 
 
van der Molen, M. K. and Dolman, A. J.: Regional carbon fluxes and the effect of 
topography on the variability of atmospheric CO2, J. Geophys. Res.-Atmos., 112, 
D01104, doi:01110.01029/02006JD007649, 2007. 
 



 

 67

4 High-resolution simulations of atmospheric CO2 over complex 
terrain- representing the Ochsenkopf mountain tall tower 

 

Abstract 

Accurate simulation of the spatial and temporal variability of tracer mixing ratios 

over complex terrain is challenging, but essential in order to utilize measurements 

made in complex orography (e.g. mountain and coastal sites) in an atmospheric 

inverse framework to better estimate regional fluxes of these trace gases. This study 

investigates the ability of high-resolution modeling tools to simulate meteorological 

and CO2 fields around Ochsenkopf tall tower, situated in Fichtelgebirge mountain 

range, Germany (1022 m a.s.l.; 50°1'48" N, 11°48'30" E). Tower measurements made 

at different heights for different seasons are used together with the measurements 

from an aircraft campaign. Two tracer transport models – WRF (Eulerian based) and 

STILT (Lagrangian based), both with a 2 km horizontal resolution – are used together 

with the satellite-based biospheric model VPRM to simulate the distribution of 

atmospheric CO2 concentration over Ochsenkopf.  The results suggest that the high-

resolution models can capture diurnal, seasonal and synoptic variability of observed 

mixing ratios much better than coarse global models. The effects of mesoscale 

transports such as mountain-valley circulation and mountain-waves on atmospheric 

CO2 distributions are reproduced remarkably well in the high-resolution models. With 

this study, it is emphasized that the high-resolution modeling simulations are 

important in the context of inverse modeling frameworks to utilize measurements 

provided from mountain or complex terrain sites. 

4.1 Introduction 
 

It is well known that atmospheric CO2 is rising due to fossil fuel combustion and 

deforestation. Being the most important anthropogenic greenhouse gas, accumulation 

of CO2 in the atmosphere is reported to be the major cause of global warming (Le 

Treut et al., 2007). Out of the total emitted CO2, about 55% is taken up by natural 

reservoirs (the land biosphere and ocean), while the rest, the so-called “airborne 

fraction”, stays in the atmosphere. However, this fraction exhibits large interannual 

variability due to the varying source and sinks of CO2, mainly over land. Quantifying 

these sources and sinks is highly demanded in predicting future increases in
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atmospheric CO2 to a high degree of certainty. This requires profound understanding 

of natural process involved in sequestrating carbon and their variability. Furthermore, 

it is essential to understand the feedback mechanisms between the carbon cycle and 

the global climate system to enable, in the near future, the implementation of 

emission reduction and sequestration strategies towards mitigating adverse effects of 

climate change.  

 
Two approaches are currently used to infer the source-sink distribution of CO2 

globally, namely the bottom-up and top-down methods. In the bottom-up approach, 

the local scale process information, such as that obtained from eddy covariance 

towers, is scaled-up using diagnostic or process-oriented models in combination with 

remote sensing measurements to derive net CO2 exchanges between the land surface 

and the atmosphere on regional or global scales. However, the accuracy of this 

approach relies on the representativeness of the local flux measurement site, hence 

one can expect significant uncertainties due to the extrapolation of non-representative 

eddy flux tower measurements. On the other hand, in the top-down approach, the 

variability in  atmospheric CO2 concentrations are observed to better understand the 

causes of variability in the source-sink distribution by inverting the atmospheric 

transport matrix (inverse modeling). The scarcity of concentration data and 

uncertainties in simulating atmospheric transport can introduce large uncertainties in 

this approach. 

 
A number of studies used inverse modelling tools at global and regional scales 

(Enting, 1993; Tans et al., 1990; Jacobson et al., 2007; Rödenbeck et al., 2003; 

Gurney et al., 2002; Gourdji et al., 2008; Lauvaux et al., 2008) together with global 

networks of observations, which also recently include tall tower observatories, to 

calculate the source-sink distribution of CO2. Tall tower observatories sample the 

lower atmosphere over continents up to altitudes of 200 m or more, and the resulting 

CO2 concentration profiles provide information on regional fluxes. In order to better 

resolve the responses of various vegetation types and the impact of human 

interventions (land use change and land management) on land-atmosphere fluxes, 

inversions need to focus on smaller scales and to utilize continental (non-background) 

measurements of CO2. This becomes problematic since the aforementioned in-situ 

measurements are often influenced by strongly spatially and temporally varying 

surface fluxes (fossil fuel emissions and biosphere-atmosphere exchange) in the near 
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field and by mesoscale transport phenomena, thus reducing their scale of 

representativeness to about 100 km (Gerbig et al., 2009). 

 
Mountain sites, on the other hand, provide measurements with larger scale 

representativeness compared to measurements made from towers over flat terrain. 

Moreover, the longest greenhouse gas records are often from mountain sites (e.g. 

Schauinsland in Germany and Monte Cimone in Italy) (Levin et al., 1995; Reiter et 

al., 1986), making them a valuable ingredient for assessing longer term variations in 

carbon budgets. However, the mesoscale atmospheric transports at these sites such as 

mountain-valley circulation and terrain induced up-down slope circulations are found 

to have a strong influence on the atmospheric distribution of trace gas mixing ratios 

(Gangoiti et al., 2001; Pérez-Landa et al., 2007; van der Molen and Dolman, 2007). 

These significant variations of atmospheric concentrations appear at relatively small 

scales that are not resolved by current global transport models used in inversions, 

complicating the interpretation of these measurements. The unresolved variations can 

introduce significant biases in flux estimates and renders the flux estimation strongly 

site-selection dependent, sometimes causing the net annual sink strength of a whole 

continent to change by nearly a factor of two (Peters, 2010). A model inter-

comparison study over Europe, using various transport models with different 

horizontal and vertical resolutions, suggested that the fine-scale features are better 

resolved at increased horizontal resolution (Geels et al., 2007). Moreover, the study 

of Geels et al. (2007) discusses the limitations of using atmospheric concentration 

data from mountain stations in inversions due to the model’s (both global and 

regional scale models) inability to represent complex terrain and to capture mesoscale 

flow patterns in mountain sites. Therefore, inversion studies usually tend to exclude 

the data from mountain or complex terrain sites, impose less statistical weighting 

(larger uncertainty), or implement temporal data filtering to the measurements (e.g. 

selection of nighttimes only data at mountain sites). 

 
The effect of transport errors on tracer concentrations are investigated in many 

studies (Lin and Gerbig, 2005; Gerbig et al., 2008; Denning et al., 2008) and the 

uncertainties for modeled mixing ratios during growing seasons due to the difference 

in advection and vertical mixing, can be as large as 5.9 ppm (Lin and Gerbig, 2005) 

and 3.5 ppm (Gerbig et al., 2008) respectively. Thus, it is pertinent to minimize these 

large and dominant uncertainties in inverse modeling systems. One approach would 
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be to increase the spatial resolution of the models in order to capture the “fine-

structures” as well as to use improved boundary layer schemes to better represent the 

vertical mixing. Furthermore, fluxes in the near-field of the observatories are highly 

variable, calling for a-priori fluxes to be specified at high spatial resolution. Detailed 

validations of such high-resolution forward models using networks of atmospheric 

measurements are needed to assess how well the transport and variability of 

atmospheric tracers are represented.  A number of studies using high-resolution 

models for resolving mesoscale transport in the atmosphere showed substantial 

improvements in simulating atmospheric CO2 concentrations under various 

mesoscale flow conditions (Ahmadov et al., 2009; Sarrat et al., 2007; van der Molen 

and Dolman, 2007; Tolk et al., 2008). 

 
High-resolution modeling tools are used together with airborne campaign 

measurements to address the representativeness of greenhouse gas measurements at 

one particular mountain site, the Ochsenkopf station. A 163 m tall tower at 

Ochsenkopf, continuously monitoring CO2 and other trace gases, is located in the 

second highest peak of Fichtelgebirge mountain range (1022 m a.s.l.; 50° 1'48" N, 

11°48'30" E) in Germany (Fig. 4.1). The site has complex terrain (Fig. 4.1b), where 

slopes influence atmospheric transport and consequently the observed mixing ratios 

(Thompson et al., 2009). Due to the difficulties in interpreting these measurements, 

the Ochsenkopf data were excluded in the global inversions of (Rödenbeck, 

2005;Peters, 2010). A modeling framework consisting of a high-resolution Eulerian 

transport model, Weather Research Forecasting (WRF) (http://www.wrf-model.org/) 

coupled to a diagnostic vegetation model, Vegetation Photosynthesis and Respiration 

Model (VPRM) (Mahadevan et al., 2008) is used to assess whether measurements can 

be represented sufficiently well when increasing the models’ spatial resolution. The 

coupled model, WRF-VPRM (Ahmadov et al., 2007) simulates CO2 concentrations at 

high spatial resolution using high-resolution CO2 fluxes from net ecosystem exchange 

( NEE ) and from fossil fuel emissions. In addition, a Lagrangian particle dispersion 

model, Stochastic Time-Inverted Lagrangian Transport Model (STILT) (Lin et al., 

2003), driven with high-resolution assimilated meteorological fields, is used to 

simulate the upstream influence on the observation point (i.e. the footprints), which 

are then multiplied by VPRM fluxes ( NEE ) as well as fluxes from fossil fuel 

emissions in order to simulate CO2 concentrations at the observation location. 
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Figure 4.1 (a) Map showing model domains used for WRF and STILT. STILT uses the larger 
domain covering Europe with two nests indicated by the blue rectangles. These two 
rectangles in blue represent the WRF domains, which are centered over OXK (500 01" N, 110 
48" E, marked with “+”). A zoom of the WRF domain is showed in right-hand side of the 
main figure with an example of a DIMO flight track overlaid in grey lines. (b) Topography 
around OXK (the color gradient shows terrain height above sea-level). 
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When the transport is adequately represented, the footprints calculated in the 

modeling system can be used to retrieve the source-sink distribution from CO2 

measurements over complex terrain at much higher spatial and temporal resolution 

than achievable with current global models.  

 
The main goals of this study are: 1) to test the ability of high-resolution modeling 

tools to represent the spatial and temporal variability of CO2 over complex terrain, 

compared to coarser models, 2) to infer the effect of mesoscale flows, such as 

mountain-valley circulation and mountain waves, on the observed atmospheric CO2 

fields and to assess how well these are reproduced in the high-resolution models, 3) to 

evaluate the models’ reproducibility in capturing synoptic, seasonal and diurnal 

variability of observed CO2 concentrations and 4) to assess the possibility of using 

these measurements in future inversion studies. The chapter is structured as follows: 

Section 4.2 describes briefly the data and the model set-up. In Sect. 4.3, the 

simulations from the high-resolution modeling framework are presented together with 

the observations as well as global model simulations. These results are discussed and 

conclusions are given in Sect(s) 4.4 and 4.5. 

4.2 Data and Modeling system   

4.2.1 Tower and Airborne measurements 
 
The Ochsenkopf tall tower (from now on referred to as OXK) was instrumented as 

part of the European project – CHIOTTO (Continuous High-precision Tall Tower 

Observations of greenhouse gases) to establish a tall tower observation network for 

the continuous monitoring of the most important greenhouse gases over the European 

continent. The tower has been operated by the Max Planck Institute for 

Biogeochemistry, Jena, for continuous measurements of CO2, CH4, N2O, CO, SF6, 

O2/N2, and isotopes, in addition to meteorological parameters, and after re-equipping 

with instruments data are available since the beginning of 2006 (Thompson et al., 

2009). For this study, high-precision (± 0.02 ppm) CO2 measurements made at three 

heights (23 m, 90 m and 163 m) on OXK for different seasons are used. CO2 is 

sampled at 2-minute intervals from all three heights in a 3-hour cycle with 1 hour for 

each height. The meteorological observations from the tower: temperature and 

relative humidity at 90 m and 163 m, pressure at 90 m, and wind speed and direction 

at 163 m, are also analyzed. 
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Measurements from wind profilers can be used to infer the state of air flow and 

dynamics within the tropospheric column. These can be used to evaluate the model in 

predicting vertical gradients of meteorological variables, which are associated with 

the transport of tracer constituents in the atmosphere. For this purpose, wind profiler 

measurements at Bayreuth, Germany (49.980 N, 11.680 E, 514 m a.s.l, 

http://www.metoffice.gov.uk/science/specialist/cwinde/profiler/bayreuth.html) are 

used. These comparisons shall give insight into the mesoscale flow patterns around 

OXK and help assess how well these are represented in the model. 

 
Apart from tower-based data, the measurements from an airborne campaign with the 

METAIR-DIMO aircraft (http://www.metair.ch/) over Ochsenkopf are used. The 

high-precision aircraft measurements, sampling air horizontally and vertically, are 

designed to understand the regional patterns of CO2, the influence of surface fluxes in 

the near-field, as well as atmospheric mesoscale transport and vertical mixing. In 

particular at Ochsenkopf, it is necessary to assess the influence of terrain-induced 

circulations on the mixing of atmospheric trace gases, which would create errors in 

inverse estimates of fluxes. The campaign was carried out during October 2008, 

covering an area around OXK (see Fig. 4.1) where the air was sampled for species 

such as CO2, CO and meteorological parameters, such as wind velocity, pressure, 

relative humidity and potential temperature, were measured. The boundary layer, up 

to several kilometers upwind of Ochsenkopf, was probed with multiple profiles 

during these flights.  The fast and accurate measurement of CO2 was achieved with an 

open path IRGA LI-7500 (greenhouse-gas analyzer), fitted to a LICO2 (modified 

closed path IRGA LI-6262) and then to flask samples, with a resolution of 20 Hz, 

which was down-sampled to 10 Hz to give an accuracy of better than 0.5 ppm. For 

more details about measuring systems, see http://www.metair.ch/. 

4.2.2 Modeling system 
 
Two high-resolution transport models, WRF (Eulerian) and STILT (Lagrangian), 

coupled to a biosphere model, VPRM, are used to simulate distribution of 

atmospheric CO2.  Both of these coupled models, WRF-VPRM and STILT-VPRM 

were provided with same high-resolution surface fluxes as well as initial tracer 

concentrations at the boundaries. 
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VPRM computes biospheric fluxes ( NEE ) at high spatial resolution by using 

MODIS satellite indices (http://modis.gsfc.nasa.gov/), i.e. Enhanced Vegetation Index 

( EVI ) and Land Surface Water Index ( LSWI ), and simulated WRF meteorological 

fields, i.e. temperature at 2m and short wave radiation fluxes. VPRM uses eight 

vegetation classes with different parameters for each class to calculate CO2 fluxes. 

These parameters were optimized against eddy flux measurements for different 

biomes in Europe collected during the CarboEurope IP experiment 

(http://www.carboeurope.org/). Further details on VPRM can be found in 

(Mahadevan et al., 2008). 

 
High-resolution fossil fuel emission data, at a spatial resolution of 10 km, are 

prescribed from an inventory at IER (Institut für Energiewirtschaft und Rationelle 

Energieanwendung), University of Stuttgart, Germany (http://carboeurope.ier.uni-

stuttgart.de/) to account for anthropogenic fluxes. Initial and lateral CO2 tracer 

boundary conditions are calculated by a global atmospheric Tracer transport model, 

TM3 (Heimann and Koerner, 2003), with a spatial resolution of 4° × 5°, 19 vertical 

levels and a temporal resolution of 3 hours. Specifically, the analyzed CO2 fields 

(available at http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2-3D/) 

that are consistent with atmospheric observations at many observing stations around 

the globe, generated by the forward transport of previously optimized fluxes (i.e. by 

an inversion) are used.  

 
In the coupled model, WRF-VPRM, the domain is set up for a small region (~ 500 

km × 500 km, hereafter referred as ‘WRF domain’) centered over OXK, and is nested 

with a horizontal resolution of 6 km (parent) and 2 km (nested) as well as with 41 

vertical levels (thickness of the lowest layer is about 18 m) (Fig. 4.1a). Each day of 

simulation starts at 18 UTC of the previous day, and continues with hourly output for 

30 hours of which the first 6 hours are used for meteorological spin-up. CO2 fields for 

each subsequent 30- hour run are initialized after the meteorological spin up with the 

previous day’s final CO2 fields. The coupled model STILT-VPRM (Matross et al., 

2006) is set up with a domain covering most of Europe, and virtual particles were 

transported backward in time for a maximum of 15 days. Trajectories were driven 

with WRF meteorology until particles left the WRF domain, and with ECMWF 

(http://www.ecmwf.int/) meteorology (horizontal resolution of approximately 25 km) 
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for the rest of the domain. The sub-grid scale turbulence in STILT-VPRM is modeled 

as stochastic Markov chain.  In STILT-VPRM, receptors are either located at 

different measurement levels on the tower or at different altitudes covering the flight 

track of the aircraft. The vertical mixing height ( zi ) is slightly different in WRF and 

STILT, although the same meteorological (for the STILT nested domains) and 

surface flux fields were used (see Sect. 5.3.1.1). For more detailed information on 

these coupled models (WRF-VPRM and STILT-VPRM), the reader is referred to 

Ahmadov et al., 2007; Nehrkorn, 2010; Pillai et al., 2010a. Note that STILT-VPRM 

uses a different model domain (Europe) than WRF-VPRM, using additional 

meteorological information from ECMWF outside the WRF domain as mentioned 

above.  

 

A continuous record of meteorological fields and CO2 concentrations from a tower 

allows the evaluation of models for different seasons as well as for different 

measurement levels. Model simulations were carried out for May (spring), August 

(summer), October (autumn) in 2006, and March (winter) in 2008. In addition to this, 

simulations were carried out for October 2008 in order to evaluate the models against 

the DIMO aircraft measurements to assess the model’s ability to reproduce CO2 

distributions over the Ochsenkopf mountain region.  

4.3 Results  
 
High-resolution simulations of meteorology (by WRF) and CO2 (by WRF-VPRM and 

STILT-VPRM) at 2 km resolution around OXK are presented here. The models are 

evaluated using wind profiler, tower and airborne measurements of meteorological 

parameters and CO2 concentrations. These model evaluations assess the ability of the 

high-resolution model framework to simulate atmospheric transport and to capture 

the spatial and temporal variability of atmospheric CO2. 

4.3.1 Model Evaluation: Meteorology 

4.3.1.1 Wind Profiler 
 
Vertical profiles of meteorological fields are validated for 2nd to 30th  August 2006  

with the measurements provided by the Bayreuth wind profiler, located about 10 km 

south-west of OXK. For demonstration, a comparison of measured and modeled wind 

and temperature profiles on 3rd August 2006 at 15 UTC is shown in Fig(s). 4.2a and 
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4.2b. The observed prevailing wind direction was northerly for the atmospheric 

column below 2 km which was also reproduced by the model simulation. For a thin 

vertical layer, between 2.3 and 3.2 km, the prevailing wind direction changed to 

south-east; however the model simulated a north-westerly wind. Above 3.2 km, both 

observations and simulations indicated a south-westerly wind. The magnitude of the 

wind was slightly overestimated in the model, particularly in the boundary layer 

(bias:~ +2 m/s).  

 
 
Figure 4.2 (a-b) Profiles of observed vs. modeled wind fields and virtual potential 
temperature for 3rd August 2006 at 15 UTC. The horizontal direction of wind is indicated with 
arrowheads (c-d) the data-model mismatch for the monthly averages of these fields at 15 
UTC, plotted against different altitude bins. The box indicates 95% quartile, the whisker 
denotes minimum and maximum of deviations and the vertical bar inside the box denotes the 
median. 
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An observation-model comparison of the vertical profile of virtual potential 

temperature ( vθ ) showed that the model simulates vθ  reasonably well, but with a 

warm bias. A relatively sharp decrease in vθ  for the thin vertical layer between 2.3 

and 3.2 km could not be captured in the model. A possible reason for the decrease in 

vθ  could be the intrusion of air from south-east direction on this layer (see Fig. 4.2a 

for wind direction) that existed for a short period of time.  

 
To analyze the overall agreement, the monthly averages of profiles for wind-speed 

and vθ , both measured and simulated, are produced at 15 UTC and the data-model 

mismatches are shown in Fig(s). 4.2c and 4.2d. The result shows that the model 

slightly overestimated wind-speed in the boundary layer and in contrast showed an 

underestimation for the free troposphere. In general, the model slightly 

underestimated vθ profiles. Overall, the model could capture much of the variability 

in the vertical profiles of wind-speed and vθ . 

4.3.1.2 Tower  
 
Evaluations of the modeled meteorology are carried out at different measurement 

levels on the tower for different seasons. An example of those validations is 

demonstrated here. Figure 4.3 shows time series’ of observed and WRF-simulated 

parameters (temperature, relative humidity and wind components) for August 2006. 

The plot shows the prevailing weather situation and also the model capability to 

predict these parameters, which can drive atmospheric CO2 variability over OXK.  

 
Simulated atmospheric temperatures at two different levels (90 m and 163 m) on the 

tower agree well with observations (squared correlation coefficient, R2= 0.86) (Fig(s). 

4.3a and 4.3b) and captured reasonably well the diurnal variability of temperature. 

Note that the model layers relative to the model terrain are used for all comparisons 

unless otherwise mentioned. A warm bias is observed at OXK during this period 

while there is a cold bias at Bayreuth (wind profiler).  This good temperature 

agreement suggests that uncertainties in the (simulated) temperature dependent 

VPRM respiration fluxes caused by temperature biases are expected to be small on 

synoptic time scales.  
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The transport of moisture (comparable to CO2 transport) in the model was validated 

by comparing the measured and simulated relative humidity at two levels. The model  

agrees well with the observations (R2 =0.60-0.74) with a slight negative bias of 0.2 to 

4.7 between levels (Fig(s). 4.3c and 4.3d). 

 
Figure 4.3  Comparison of measured and modeled meteorological parameters for August 
2006 at the OXK site: (a-b) temperature at 163 m and 90 m, (c-d) relative humidity at 163 m 
and 90 m and (e-f) horizontal components of wind at 163 m. The green dotted vertical lines 
denotes the passage of a cold front investigated in detail (see Sect. 4.4.1). 
 

The wind speed and direction was also predicted reasonably well. A comparison of 

horizontal components of observed and modeled wind components u (east-west) and 

v (north-south) at 163 m (Fig(s). 4.3e and 4.3f) demonstrates fairly good agreement 

between observations and simulations (R2 =0.70 and 0.61 respectively).  
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Table 4.1  Summary statistics of observed and simulated (WRF) meteorological fields (model bias (bias), standard deviation (sd) and squared 

 correlation coefficient (R2)) using hourly time series at available measurement levels for different seasons. 

Season level Temperature Relative Humidity u-component v-component 

  bias sd R2 bias sd R2 bias sd R2 bias sd R2 

 

163 

 

1.2 

 

1.4 

 

0.81 

 

2.8 

 

9.8 

 

0.84 

 

0.9 

 

3.1 

 

0.92 

 

1.2 

 

2.3 

 

0.66 

 

Spring 

(May 06) 

 

90 0.7 1.3 0.80 0.4 10.9 0.71 - - - - - - 

163 1.3 1.0 0.86 -0.2 6.7 0.74 0.3 2.7 0.70 1.1 2.7 0.61 Summer 

(Aug 06) 

 
90 0.8 1.1 0.86 -4.7 8.3 0.60 - - - - - - 

163 0.2 1.7 0.68 6.2 14.0 0.79 2.2 3.4 0.81 0.2 3.0 0.65 Autumn 

(Oct 06) 

 
90 -0.1 1.6 0.67 3.8 14.7 0.62 - - - - - - 

163 1.4 0.9 0.93 -1.9 9.0 0.52 0.6 6.4 0.48 1.2 5.0 0.33 Winter 

(Mar 08) 

 
90 1.2 1.0 0.91 -6.4 12.2 0.48 - - - - - - 
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Table 4.1 gives the overall model performance (model bias, standard deviation of 

model-data mismatch and squared correlation coefficient of the model-data 

agreement) from comparing the hourly time series of observed and simulated 

meteorological fields at the available measurement levels for different seasons.  The 

summary statistics indicate that WRF could follow reasonably well the seasonal 

changes in the atmospheric transport and dynamics.  

4.3.1.3 DIMO Campaign 
 
Vertical distributions of meteorological fields were validated against the DIMO 

profiles around the Ochsenkopf mountain region for all campaign days. The box-

whisker plot (Fig(s). 4.4a and 4.4b) of the data-model mismatch (from all aircraft  

 
Figure 4.4 The box-whisker plot of model mismatch (observations-simulations) using all 
aircraft profiles for a) specific humidity, b) wind speed and c) CO2 (WRF-VPRM) d) CO2 
(STILT-VPRM).The box indicates 95% quartile, the whisker denotes minimum and maximum 
of deviations and the vertical bar inside the box denotes the median. Black dots are outliers. 
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profiles) provides an overview of the model performance on simulating specific 

humidity and wind speed. In general, WRF meteorological simulations agree well 

with the DIMO observations as indicated by the lower median (+0.25g/kg for water-

vapor mixing ratio and -0.06 m/s for wind speed  while using all available 

observations and simulations) and 95% quartile (1.5 g/kg for specific humidity and 

3.2 m/s for wind speed). Noteworthy is that the data-model mismatch for water vapor 

mixing ratio increases with increasing height.   

 
Figure 4.5  Vertical cross section (using a distance weighted interpolation) of the observed 
and simulated meteorological fields as a function of distance flown by the aircraft for 19th 
October 2006: a-b) specific humidity in g/kg c-d) Wind speed in ms-1. (a) and (c) represent 
measurements and (b) and (d) represent WRF simulations. The grey lines indicate flight track 
and the shaded grey region represents terrain elevation. See Figure 4.7d for aircraft track 
showing altitude above ground. Time of the measurements/simulations is given in the top X-
axis. 
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As an example, the model-data comparison for 19th October 2008 from 10 to 14 UTC 

is demonstrated.  During this period, the air was sampled intensively near the top of 

OXK and the surrounding mountain ridges and valleys (see Fig. 4.7d). Figure 4.5 

shows the vertical cross-section of the observed and modeled meteorological fields 

(wind speed and specific humidity) as a function of distance flown by the aircraft 

(Cumulative Distance, hereafter referred to simply as distance). WRF reproduced 

specific humidity fairly well at the surface layers; however, it showed a slight 

underestimation in the upper vertical levels (Fig(s). 4.5a and 4.5b). A relatively calm 

wind (2-5 m/s) was observed over Ochsenkopf mountain ranges during this period 

except in the early hours of the campaign. This was predicted remarkably well in 

WRF with negligible bias (Fig(s). 4.5c and 4.5d).  

4.3.2 Model Evaluation: CO2 concentrations 
 
Similar to Sect. 4.3.1, observations of CO2 fields at OXK and during the DIMO 

aircraft campaign are used for the evaluation of the models (WRF-VPRM and 

STILT-VPRM). 

4.3.2.1 Tower 
 
The observed atmospheric CO2 concentrations at different measurement levels are 

compared with simulations generated by WRF-VPRM and STILT-VPRM for 

different seasons. For illustration, the time series comparison of CO2 concentrations 

at 90 m level on the tower for the period from 2 to 30 of August 2006 (Fig. 4.6) is 

shown. The period is chosen due to its enhanced biospheric activity and the existence 

of strong diurnal patterns in transport and fluxes which can complicate the 

measurement interpretation. For comparison, the CO2 analyzed fields from TM3 with 

3-hourly time steps are also included. The observed atmospheric CO2 shows large 

diurnal and synoptic variability and notably, these large variations in atmospheric 

CO2 were not captured in the TM3 global model. Note that the generation of analyzed 

CO2 fields (by atmospheric inversion) did not include OXK CO2 data, so in this sense 

they can be used for independent validation. The comparison becomes more 

favorable when high-resolution transport and fluxes are used. Most of the observed 

variability in CO2 concentrations on the tower is reproduced well in both high-

resolution models when compared to TM3 (Fig. 4.6). This points to the fact that most 

of the variations in CO2 are due to surface flux variations and mesoscale transport 
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processes on scales not resolved by TM3, which has a grid-cell size of several 

hundred kilometers. Also note that TM3 uses coarse resolution terrain elevation data. 

 

 
 
Figure 4.6  Comparison of measured and modeled CO2 concentrations for August 2006 at 90 
m on the OXK. A period between dashed green vertical bars denotes a synoptic event during 
0 to 15 UTC on 18th August 2006 (see also Sect. 4.4.1). 
 

In addition to August (summer) 2006, CO2 concentrations are also validated for other 

seasons and the summary statistics (similar to Table 4.1) of the model-data 

comparison are given in Table 4.2. Observations from other levels (23 m and 163 m) 

on the tower are also used to assess the models’ performance in reproducing the 

vertical structure of CO2 in the atmospheric column. The summary statistics clearly 

indicate that high-resolution models are able to predict remarkably well the temporal 

patterns of CO2, measured at three different vertical levels on the tower, for different 

seasons. Section 4.4.3 discusses further the seasonal variability of CO2 

concentrations.  

4.3.2.2 DIMO Campaign 
 
The profiles of atmospheric CO2 concentrations obtained from the aircraft campaign 

were used to examine how well the models can reproduce the vertical distribution of 

tracer concentrations over the Ochsenkopf mountain region. Figure 4.4c shows the 

statistical analysis of data-model mismatches using CO2 profiles for all days in the



 

 84 

Table 4.2  Summary statistics of observed and simulated CO2 fields (model bias (bias), standard deviation (sd) and squared correlation coefficient (R2))  
using 3-hourly time series at available measurement levels for different seasons. Simulated fields are provided by TM3, STILT-VPRM and WRF-VPRM. 
 

Season Level TM3 STILT-VPRM WRF-VPRM 

  bias sd R2 bias sd R2 bias sd R2 

163 -1.9 3.1 0.11 -1.7 3.0 0.33 1.4 2.7 0.41 

90 -1.7 3.2 0.16 -1.7 2.8 0.50 1.4 2.4 0.57 

Spring 

(May 06) 

 23 -1.1 4.1 0.09 -1.6 2.8 0.58 1.6 2.8 0.58 

 

163 0.5 4.0 0.01 0.6 2.8 0.50 0.8 2.9 0.46 

90 0.4 4.8 0.02 0.3 3.2 0.58 0.6 3.3 0.55 

Summer 

(Aug 06) 

 23 0.8 5.0 0.01 -0.1 3.4 0.52 0.5 3.1 0.62 

 

163 2.6 3.9 0.39 -0.5 3.1 0.59 0.6 3.3 0.51 

90 3.4 4.7 0.29 -0.4 3.4 0.62 0.6 3.9 0.52 

Autumn 

(Oct 06) 

 23 4.6 5.5 0.21 -0.4 4.4 0.52 0.3 4.7 0.49 

 

163 1.6 2.1 0.17 -0.5 2.2 0.20 0.5 2.3 0.23 

90 1.5 2.1 0.19 -0.8 1.8 0.42 0.4 2.2 0.30 

Winter 

(Mar 08) 

 23 2.1 2.6 0.14 -0.8 2.4 0.37 0.5 2.6 0.32 
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campaign. The median of all residuals is 0.5 (1.1) ppm for STILT-VPRM (WRF-

VPRM). The data-model mismatch of CO2 for both models increases with decreasing 

heights, the opposite of what was found for water vapor. The reason is twofold: 1) the 

large variability of CO2 at the surface compared to higher levels (Pillai et al., 2010b) 

and 2) improper representation of boundary layer vertical mixing in the models. 

 
The same period that was chosen for DIMO meteorological validations is used also 

here as an example to demonstrate the vertical distribution of CO2. Figure 4.7 shows  

 
Figure 4.7  Vertical cross section (using a distance weighted interpolation) of the observed 
and simulated CO2 fields (given in ppm) as a function of distance flown by the aircraft 
(cumulative distance) for 19th October 2006: a) measurements b) WRF-VPRM c) STILT-
VPRM and d) Flight track with color gradient showing altitude range (legend at the top left-
hand side of the panel) above ground. The symbol “*” denotes cumulative distance in km 
(legend at the bottom right-hand side of the panel). In (a-c), the time of 
measurements/simulations is given in the top X-axis. 
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the vertical cross section of the observed and simulated CO2 concentration as a 

function of distance for 19th October 2006 from 10 to 14 UTC. Compared to summer 

months, higher values of CO2 are generally expected due to lower biosphere uptake 

and shallower vertical mixing. Accumulation of CO2 in the valley south of OXK was 

observed in the morning (10:30-11:30 UTC) between the aircraft’s cumulative flown 

distance range 120 and 200 km (see Fig. 4.7a).  CO2 can accumulate in valleys under 

shallow vertical mixing in the nocturnal boundary layer as well as under nocturnal 

drainage conditions in complex terrain. The valley-mountain gradient in CO2 

concentrations in the valley decreased rapidly in the afternoon with the establishment 

of convective mixing and consequently enhanced vertical turbulence. STILT-VPRM 

and WRF-VPRM were able to capture relatively well the CO2 accumulation in the 

valley in the morning (distance between 100 and 200 km); however WRF-VPRM 

slightly underestimated the vertical extent of valley accumulation during this period. 

At noon (distance between 280 and 320 km), STILT-VPRM overestimated the CO2 

concentrations and this overestimation can also be seen in the afternoon when the 

boundary layer is well mixed. 

4.4 Discussion  

4.4.1 Synoptic Variability 
 
The observations show considerable synoptic variability in CO2 concentrations which 

are driven by atmospheric transport and surface flux heterogeneity. These synoptic 

variations in tracer concentrations provide valuable information on spatiotemporal 

patterns of surface fluxes and thus can be used in atmospheric inversion to construct 

regional fluxes.  A synoptic event (cold front), observed on 18th August 2006, during 

which the observed CO2 showed an enhancement of more than 20 ppm, is analyzed in 

detail to examine how such variations are represented by the mesoscale models. In 

the beginning of the event, the air temperature dropped significantly with a relatively 

sharp decrease in relative humidity (Fig(s). 4.3a to 4.3d). The wind speed was 

relatively high, reaching a maximum of 15 m/s.  The atmospheric CO2 observation 

shows a large peak during this period, which was captured by both models as seen in 

Fig(s). 4.6, 4.8a and 4.8b. However the models predict this elevated concentration 

with a considerable low bias of ~15 ppm. During the event, the air was coming from 

the south-west, and the time integrated footprints derived from STILT (sensitivity of 

mixing ratio at 7:00 UTC on 18th August to surface fluxes integrated over the past 48 
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hours), shows a strong influence from the highly industrialized area in the south-west 

part of Germany occurring 10 hours prior to the measurement (Fig. 4.8c). Tracer  

 
Figure 4.8  Influence of surface fluxes on measured CO2 concentration at OXK: a and b) Time 
series of simulated anthropogenic and biospheric CO2 signals (contribution of anthropogenic 
and biospheric fluxes to the total CO2) at 90 m on the tower during 17-18 August 2006. c) 
Time integrated footprints derived by STILT on 18th August 2006 at 7:00 UTC for particles 
running -48 hours (backward in time) from tower (indicated with + sign).  
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simulations, where anthropogenic and biospheric contributions within the domain are 

separated, show a large contribution from respiration and emission fluxes for the 

event (Fig. 4.8a) and consequently an increase in CO2 concentration in the 

atmosphere (Fig. 4.8b), which reached a peak in the early morning, owing to the 

shallow mixing in the nocturnal boundary layer. These higher concentrations started 

decreasing with the development of the convective mixed layer combined with the 

drawdown of CO2 by photosynthesis. The above analysis suggests that OXK during 

this event was highly influenced by air carrying a large contribution from respiration, 

but also emissions originating from densely populated and industrialized area. The 

underestimation of the CO2 peak in the models could be due to several reasons: 1) 

uncertainties in vertical mixing (this is the more likely scenario as it would strongly 

affect the vertical distribution of tracer concentrations, producing large model-data 

mismatches) 2) uncertainties in advection (WRF underestimated the wind speed in 

the beginning of the event and predicted south-easterly wind rather than the observed 

south-westerly wind direction. The strong south-westerly wind might be associated 

with advection of large plumes of CO2 (respired and anthropogenic) to the 

measurement location) 3) the underestimation of anthropogenic emissions in the 

inventory for this area of influence (uncertainties of emission inventories at small 

spatial and short temporal scales can easily be as large as 50% (Olivier et al., 1999) 4) 

uncertainties in the VPRM respiration fluxes (note that VPRM simulates respiration 

fluxes as a linear function of the simulated surface temperature (at 2m). The 

uncertainty due to a temperature bias is likely to be small because the simulated 

temperature for this period is fairly in good agreement with observations. However, 

the respiration fluxes in reality are not only controlled by temperature but also by 

other factors such as soil moisture.) 5) underestimation of TM3 initial fields (it is 

more unlikely that a short term event, which originated outside of Europe domain, 

would have had an influence on this). This emphasizes the complexities of 

mechanisms involved in such short-term scale events. The vertical profiling of CO2 

(as like DIMO aircraft campaign) or wind profiler measurements can be helpful to 

assess the impact of vertical mixing on tracer concentrations).  

 
In general, both high-resolution models could capture the general trend of CO2 

variability during this synoptic event, by simulating well the influence of surface 

fluxes in the near-field and the atmosphere dynamics.  
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4.4.2 Orographic Effect 
 
The mountainous terrain can influence the regional circulation pattern around the 

tower site, resulting in local flow patterns which can have an impact on diurnal 

patterns in tracer concentration measurements. The local flow patterns are developed 

by the formation of 1) thermally forced mountain-valley circulations in response to 

radiative heating and cooling of the surface and 2) topographically induced stationary 

gravity waves (i.e., mountain waves) when stable flow encounters a mountain barrier. 

The downslope flows are more common at OXK during nighttime although mountain 

gravity waves are also likely in winter periods (based on WRF simulations as well as 

photographs taken during DIMO campaign). 

4.4.2.1 Mountain-Valley Circulations 
 
The mountain valley flows can change the atmospheric vertical mixing and can thus 

influence tracer measurements at OXK (Thompson et al., 2009). An example of such 

an event occurred at nighttime between 26 and 27th August 2006 is demonstrated in 

Fig. 4.9. During this period, the expected nocturnal CO2 build up at OXK was found 

to be nearly absent owing to the thermally induced drainage flow. The data shown are 

the time series of meteorological and CO2 observations at each level on the tower for 

a period from 26 to 28 August 2006. The period between the brown vertical dashed 

lines in Fig. 4.9 shows evidence of mountain-valley circulation. Also the period was 

under weak synoptic pressure gradient conditions (as indicated by the simulated 

potential temperature) with a prevailing westerly flow (as indicated by the simulated 

wind speed) (Fig(s). 4.10a and 4.10c). The observed temperature and wind speed 

during this period (Fig(s). 4.9a and 4.9b) also suggest that the conditions were 

favorable for the formation of a buoyancy-driven downslope flow.  Following 

radiative cooling of the surface on 26th August, relatively dry air intruded from the 

free troposphere into the nocturnal boundary layer, which was observed as a sharp 

decrease in the relative humidity (Fig. 4.9b). Noticeable time lags in the transition 

from moist to dry air were seen at the different sampling levels, which also indicate 

the intrusion of air from above.  The evidence of dry air subsidence from the residual 

layer can also be seen later at 06 UTC on 27th August. Consequently, a decrease in 

CO2 concentration was observed at 00 UTC and at 06 UTC on 27th August due to the  
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Figure 4.9  Time series of meteorological parameters and CO2 concentrations for different 
levels at OXK site during 26-28 August 2006: a-c) observed air-temperature, relative 
humidity and wind speed respectively d-f) CO2 concentration, observed and modeled by WRF 
and STILT, respectively. The area between dashed brown vertical bars denotes the period 
under mountain-valley circulation. The X-axis shows hours in UTC; the horizontal extent of 
curly bracket at the bottom of X-axis shows the day on August 2006. 
 
replacement of air by the residual layer containing lower CO2 concentration. STILT-

VPRM captured well the lowering of CO2 concentration at 06 UTC in response to the 

drainage flow and simulated well-mixed tracer concentrations in the nocturnal 

boundary layer. However WRF-VPRM showed an unrealistic accumulation of CO2 

concentration at the lower level which might be associated with the underestimation 

in the vertical extent of the entrainment air reaching the tower site. The presence of 

katabatic flow on the lee side of the mountain was predicted in WRF, indicated by the 

negative vertical velocity (downward movement of air) and increased wind speed 

along the mountain slope (Fig. 4.10d). The (simulated) impact of drainage flow on 

the tracer concentrations on the lee side of the mountain can be seen as a region of 

lower CO2 contours in Fig. 4.10b.  
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Figure 4.10  Vertical cross section along OXK latitude (500 01" N) on 27th August 2006 at 
01:00 UTC, showing WRF-VPRM simulated a) Potential temperature in Kelvin b) CO2 
concentration in ppm c) Wind speed in ms-1 and d) Vertical velocity in ms-1. The overlaid 
arrows indicate prevailed wind direction; the symbol “+” indicates OXK location.  

4.4.2.2 Mountain Wave Activity 
 
The buoyancy driven upslope and downslope flows, which are discussed above, are 

less common in winter due to low surface heating.  As mentioned earlier, under stable 

stratified nocturnal boundary conditions, mountain gravity waves can be formed 

when air flow is perturbed with a barrier (e.g. mountain). Propagation of gravity 

waves transporting mass and energy in the stable boundary layer can affect tracer 

concentrations measured at the tower. The possible occurrence of gravity waves can 

be assessed by estimating the Froude number (Stull, 1988), Fr (the ratio of inertial to 

gravitational forces, = ( )
U

N h×  ) which relates the prevailing horizontal wind speed 

(U ), mountain height ( h ) and buoyancy oscillation frequency (Brunt–Väisälä 
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frequency, N - calculated as a function of potential temperature). When Fr is near 

unity, the wavelength of the air flow is in resonance with the mountain size, creating 

trapped mountain lee waves which results in strong downslope winds and enhanced 

turbulence on the lee side of the mountain.  

 
However, the mountain wave activity is much more complex in reality and is difficult 

to interpret its effects on measurements. An ideal case of such an activity was 

occurred at a nighttime between 16 and 17th October 2006 (between brown dashed 

lines in Fig. 4.11). A temperature inversion was observed during this period (Fig. 

4.11a) indicating the stable atmospheric conditions. The sharp decrease in observed 

 
 
Figure 4.11  Time series of meteorological parameters and CO2 concentrations for different 
levels at Ochsenkopf tower site during 16-17 October 2006: a-c) observed air-temperature, 
relative humidity and wind speed respectively d-f) CO2 concentration-observed, modeled by 
WRF and STILT respectively. The area between dashed brown vertical bars denotes the 
period under mountain wave activity. The X-axis shows hours in UTC; the horizontal extent 
of curly bracket at the bottom of X-axis shows the day on October 2006. 
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relative humidity on the tower under relatively high wind speed indicates the 

presence of possible mountain wave activity with intrusion of dry air on the lee side 

of the mountain. These meteorological features were predicted reasonably well by the 

WRF model and the west-east cross section of simulated vertical velocity shows the 

downward movement of air at the lee side of the mountain (Fig. 4.12d). Note that the  

 
Figure 4.12  Vertical cross section along OXK latitude (500 01" N) on 17th October 2006 at 
02:00 UTC, showing WRF-VPRM simulated a) Potential temperature in Kelvin b) CO2 
concentration in ppm c) Wind speed in ms-1 and d) Vertical velocity in ms-1

. The overlaid 
arrows indicate wind direction. 
 

WRF simulations might not always capture the waves correctly and the caution has to 

be taken to interpret the structures of the vertical velocity fields which can also be 

formed due to the numerical noise. The increased gradient in the simulated potential 

temperature, together with higher values of simulated vertical velocity (50 cm s-1) and 

strong wind speed, suggests the occurrence of mountain wave phenomena at the OXK 

site (Fig. 4.12). The Froude number was found to be close to unity, indicating the 
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likelihood of gravity wave (mountain wave) activity. In addition to this, the simulated 

wavelengths λ (= U
N

) for the region over the mountain were found to be close to the 

mountain height, showing the existence of vertically propagating mountain waves. 

 
Following the collapse of the convective boundary layer on 16 October, CO2 started 

to build up in the nocturnal shallow boundary layer and showed a distinctive gradient 

between layers for a few hours between 18-21 UTC. These nocturnal developments 

of CO2 were captured fairly well in STILT-VPRM, however the vertical mixing 

between levels at 23 m and 90 m was underestimated. Corresponding to the 

prevailing mesoscale feature, the observed nocturnal gradient in tracer concentrations 

disappeared in response to the decent of air from the free troposphere. This was 

reproduced well in STILT-VPRM, while WRF-VPRM showed the decreasing 

tendency of CO2 concentrations on this period but with an unrealistic gradient 

between the layers, which might be due to the underestimated mixing process. Note 

that vertical mixing is parameterized slightly differently in WRF-VPRM and STILT-

VPRM. The influence of mountain waves on generating turbulent vertical mixing of 

nocturnal tracer concentrations at the lee side of the valley can be seen in the WRF-

VPRM simulations (Fig. 4.12b).  Owing to the strong downward movement of air and 

vertical mixing, a layer of lower CO2 concentration was simulated for the western 

slope of the mountain, despite the nocturnal build-up period. The nocturnal build-up 

of CO2 under shallow mixing and weak biological CO2 uptake were simulated for the 

other valleys (Fig. 4.12b).  

 
The above two case studies suggest that changes in the atmospheric transport and 

mixing in response to mesoscale phenomena, such as mountain-valley circulation and 

mountain waves, can strongly affect the diurnal patterns of CO2 concentrations at 

OXK, and that these can be represented reasonably well in mesoscale models at the 

resolution of 2 km.  

4.4.3 Seasonal Variability 
 
Different seasonal aspects, such as changes in thermal circulation patterns (changes in 

solar radiation), changes in diurnal patterns of vertical mixing, effects of snow cover 

and diurnal variations in surface fluxes, can have an important influence on measured 

tracer concentrations. Seasonal changes in the diurnal patterns of CO2 concentration 
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are observed at Ochsenkopf mountain station as it can be influenced by 

heterogeneous land sources and sinks as well as by synoptic atmospheric conditions. 

Figure 4.13 shows averaged diurnal cycles of observed and modeled CO2 at different 

measurement levels and for different seasons. Except for the level 163 m in winter 

and autumn, the CO2 concentration maxima were observed during nighttime due to 

the accumulation of CO2 concentration in the shallow nocturnal boundary layer. The 

measurement level at 163 m during winter and autumn is more representative of free 

tropospheric or residual layer air, as indicated by the weak diurnal changes in 

observed concentrations and by the decoupling relative to the lower levels. The slight 

daytime increase at the 163 m level, delayed by about six hours compared to the 

lower levels, is consistent with the daytime mixing of air previously trapped in the 

stable mixed layer, containing remnants of respired CO2 from the previous night. The 

amplitude of the diurnal cycle is larger in spring and summer months (~8 ppm), 

consistent with the enhanced biospheric activity (photosynthesis and ecosystem 

respiration), whereas the amplitude is smaller in autumn and winter months owing to 

the reduced diurnal variability in the terrestrial fluxes. The low values of CO2 are 

noticeable in August (active growing season) due to enhanced biospheric CO2 uptake.  

The model-data agreement is fairly good for higher resolution models, except for the 

level 163 m in winter and autumn seasons where both models overestimate the 

vertical mixing. The coarse resolution TM3 analyzed CO2 fields (taken from 940 

hectopascal (hPa) TM3 pressure level which corresponds to the measurement levels 

above sea level, i.e. relative to the sea level; indicated as “TM3” in Fig. 4.13) show 

little diurnal change during all seasons and at all levels. On the other hand, TM3 

analyzed CO2 fields corresponding to the model levels close to the measurement 

levels from the surface, i.e. relative to the model terrain (taken from 1013 hPa and 

1002 hPa TM3 pressure levels corresponding to the levels on the tower; indicated as 

“TM3-surface” in Fig. 4.13) show large diurnal variability due to the strong influence 

of surface fluxes near the ground, but with large positive biases in most of the cases. 

This discrepancy can lead to potential biases in flux estimates when using 

measurements from a site like OXK, as discussed above. Again, this suggests the 

importance of using high-resolution models to resolve the large variability of 

atmospheric CO2 concentrations in response to variability in surface fluxes and 

mesoscale transport. In order to examine whether the poor performances of TM3 are 

caused by the coarse resolution flux fields (horizontal resolution: 4° × 5°), the 
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Figure 4.13  Averaged diurnal cycle of observed and modeled CO2 for OXK at different 
measurement levels and for different seasons: a) May 2006 (spring), b) August 2006 
(summer), c) October 2006 (autumn) and d) March 2008 (winter). In each plots, top to 
bottom panels represents CO2 at 163 m, 90 m and 23 m respectively. X-axis: hour; Y-axis: 
CO2 concentration in ppm. 
 

STILT-VPRM is run with biospheric fluxes aggregated to ~500 km × 500 km 

resolution, comparable to the TM3 resolution. CO2 simulated by this coarse 

resolution version of STILT-VPRM shows remarkable similarity to the high-
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resolution simulations by STILT and WRF in the diurnal cycle for the different 

seasons.  

4.4.4 Vertical distribution of CO2 concentrations 
 
The vertical profiling of atmospheric CO2 during aircraft campaigns provides more 

information on vertical mixing in the atmosphere and provide the opportunity to 

evaluate current transport models. The discrepancies in predicting atmospheric 

mixing can lead to a strong bias in the simulated vertical distribution of CO2 

concentrations. An example of such an effect can be seen in Fig(s). 4.5 and 4.7. The 

underestimation of the vertical extent of CO2 accumulation (as mentioned in Sect. 

4.3.2.2) can be caused by the overestimation of vertical mixing in WRF. The effect of 

this overestimation can also be seen in the modeled specific humidity (Fig. 4.5b) as 

low values (underestimation) in the upper layers. Note that the wind speed was 

predicted well in WRF with negligible bias. 

 
It should also be mentioned that the difference in observed and modeled wind speed 

found at the Ochsenkopf valley for another day of the campaign (23rd October 2008) 

generated an underestimation of CO2 concentration in both WRF-VPRM and STILT-

VPRM (figure not shown). WRF underestimated the flow of air, advected from 

upstream locations and consequently failed to capture the huge contribution of the 

advected respired signal to the measurement locations. STILT-VPRM also shows a 

similar underestimation of CO2 concentration for the same reason. 

 
These two case studies of model evaluation with the airborne measurements show the 

necessity of accurately predicting the mesoscale atmospheric transport, such as 

advection and convection, as well as vertical mixing. Both models are able to capture 

the spatial variability of measured CO2 concentration in the complex terrain for most 

of the cases and the discrepancy between models and measurements are mainly 

attributed to the difference in representing atmospheric PBL dynamics. 

4.5 Summary and Conclusions 
 
High-resolution modeling simulations of meteorological fields and atmospheric CO2 

concentrations, provided by WRF-VPRM and STILT-VPRM, are presented together 

with measurements obtained from the Ochsenkopf tower (OXK) and from an aircraft 
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campaign, to address the representativeness of greenhouse gas measurements over a 

complex terrain associated with surrounding mountain ranges. The spatial and 

temporal patterns of CO2 are reproduced remarkably well in high-resolution models 

for different seasons when compared to the coarse model (TM3). This emphasizes the 

importance of using high-resolution modeling tools in inverse frameworks, since a 

small deviation in CO2 concentration can lead to potentially large biases in flux 

estimates. The actual reduction in uncertainties of flux estimates when using high-

resolution models (compared to lower-resolution models) in the inverse framework 

needs to be further investigated.  

 
The measurements of CO2 at OXK show diurnal, synoptic and seasonal variability of 

CO2 due to different aspects such as changes in the diurnal patterns of vertical mixing, 

diurnal variations in surface fluxes, effect of front passage, changes in thermal 

circulation patterns etc. These variations in tracer concentrations provide valuable 

information on spatiotemporal patterns of surface fluxes and thus can be used in 

atmospheric inversions to construct regional fluxes. Both high-resolution models 

were able to capture this variability by simulating well the influence of surface fluxes 

in the near-field and the atmosphere dynamics.  

  
The mesoscale flows, such as mountain wave activity and mountain-valley 

circulations, can have a strong influence on the observed atmospheric CO2 at OXK by 

changing the vertical mixing of the tracer concentrations. The meteorological 

simulations by WRF indicate that the buoyancy driven drainage flows are more 

common at OXK during nighttimes (especially in summer) and mountain gravity 

waves are likely to occur in winter periods.  Resolving these circulation patterns in 

models is a prerequisite for utilizing observations from mountain stations such as 

OXK with a reduced representation error.  

 
The discrepancies in predicting vertical mixing can lead to strong biases in simulated 

CO2 concentrations and these kinds of uncertainties are typical for complex terrain 

regions. The vertical profiling of CO2 (like the DIMO aircraft campaign) or wind 

profiler measurements can be helpful in assessing the impact of vertical mixing on 

tracer concentrations. The study shows that much of the variability in CO2 

concentrations can be reproduced well by appropriate representation of mesoscale 
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transport processes, such as advection, convection and vertical mixing as well as 

surface flux influences in the near-field.  

 
This study demonstrates the potential of using high-resolution models in the context 

of inverse modeling frameworks to utilize measurements provided from mountain or 

complex terrain sites. The future work will focus on regional inversions using STILT-

VPRM at high-resolution with a nested option. The feasibility of using these high- 

resolution nests in global models has already been demonstrated by Rödenbeck et al., 

2009. This provides justified hope that measurements from mountain stations can be 

utilized in inverse modeling frameworks to derive regional CO2 budgets at reduced 

uncertainty limits. 
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5 Comparing Lagrangian and Eulerian models for CO2 transport – 
a step towards Bayesian inverse modeling using WRF/STILT-
VPRM 

 
Abstract 
 
Simulations of atmospheric CO2 concentrations provided by two modeling systems, 

run at high spatial resolution are presented. The modeling systems consist of the 

Eulerian-based Weather Research Forecasting (WRF) model and the Lagrangian-

based Stochastic Time-Inverted Lagrangian Transport (STILT) model, both of which 

are coupled to a satellite-based biospheric model, the Vegetation Photosynthesis and 

Respiration Model (VPRM). A quantitative comparison between the two different 

approaches, while using identical surface-atmosphere fluxes and meteorological 

fields, is a prerequisite for applying STILT as an adjoint of WRF for inverse 

modeling.  The consistency of the simulations is assessed with special attention paid 

to the details of horizontal as well as vertical transport and mixing of CO2 

concentrations in the atmosphere. A case study using airborne measurements during 

which both models showed large deviations is analyzed in detail as an extreme case. 

Using aircraft observations and pulse release simulations, it is identified that 

differences in the representation of details in the interaction between turbulent mixing 

and advection through wind shear as the main cause of discrepancies between WRF 

and STILT transport. Based on observations and inter-model comparisons of 

atmospheric CO2 concentrations, it is shown that a refinement of the parameterization 

of turbulent velocity variance and Lagrangian time-scale in STILT is needed to 

achieve a better match between the Eulerian and the Lagrangian transport at such a 

high spatial resolution. Nevertheless, the inter-model differences in simulated CO2 

time series for a tall tower observatory at Ochsenkopf in Germany are about a factor 

of two smaller than the model-data mismatch and about a factor of three smaller than 

the mismatch between the current global model simulations and the data, which 

justifies using STILT as an adjoint model of WRF. 

5.1 Introduction 
 
Inverse modeling tools use the atmosphere as an “integrator” to obtain information on 

the source-sink distribution of CO2 on different spatial and temporal scales. A 

common practice is to use a global atmospheric transport model together with a 
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network of atmospheric measurements to estimate the relationship between flux and 

tracer distributions via inverse techniques. The reliability of the inverse flux 

estimation depends largely on the quality of the transport represented in the models 

(Gerbig et al., 2008; Lin and Gerbig, 2005; Stephens et al., 2007; Geels et al., 2007).  

 
Atmospheric transport models can be based on either Eulerian or Lagrangian 

formulations of the fluid transport process. In the Lagrangian formulation, the motion 

of fluid elements is described by solving the Lagrangian equations of mass and 

momentum along the trajectory of the particle/fluid element and calculating the 

change of the particle/fluid element location and the velocity components. In the 

Eulerian approach, the mass concentration of fluid elements is calculated as a 

function of space and time instead of calculating trajectories of fluid elements. The 

governing equations are similar to the Navier-Stokes equations, with additional terms 

in the momentum equations to account for the turbulent dispersion. Both Eulerian and 

Lagrangian modeling approaches are used in the inverse modeling community to 

estimate source-sink distributions (Gerbig et al., 2003a; Lauvaux, 2008; Rödenbeck et 

al., 2003)  

 
The atmospheric distribution of trace gases is variable on small scales (both temporal 

and spatial), caused by strong surface flux variability in the near field and by 

mesoscale transport phenomena. However, the current global models, with spatial 

resolutions of no more than 1°×1°, fail to resolve these variations on measured 

atmospheric CO2, which potentially leads to biases in flux estimates (Ahmadov et al., 

2009). In order to better represent measurements made in the mixed layer (the lowest 

1 to 2 km of the atmosphere) by stations such as tall towers, the inverse system 

requires the atmospheric transport models to be set up at high spatial resolution (2 to 

20 km). In addition, the fluxes in the near-field of the observatories can be highly 

variable (Gerbig et al., 2003b), calling for a-priori fluxes to be specified at high 

spatial resolution.  Recent studies have demonstrated improvement in capturing the 

variability of observed CO2 concentrations when increasing the spatial resolution of 

the transport models (Ahmadov et al., 2007; Pérez-Landa et al., 2007; Sarrat et al., 

2007; van der Molen and Dolman, 2007). 

 
Gerbig et al. (2003a) describes a receptor-oriented framework using a Lagrangian 

Particle Dispersion Model (LPDM) together with lateral boundary conditions and a 
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biospheric flux model to derive regional fluxes at high spatial and temporal 

resolution. The “footprints” (sensitivity of model output (e.g. concentration) to input 

variables (e.g. surface fluxes)) derived from an LPDM is similar to the adjoint of an 

Eulerian Transport model (Errico, 1997). Using these footprints has the advantage of 

resolving the fine structures originating from surface flux variations on scales smaller 

than the grid size of the meteorological fields used. In the case of the Eulerian 

approach, the models are affected by numerical diffusion, limiting the resolution to 

scales larger than the grid size in the underlying meteorology. The framework is thus 

analogous to a regional adjoint model in an Eulerian framework, providing an 

alternative to generating and implementing adjoint model code for an Eulerian 

transport model.  

 
A framework similar to that introduced by Gerbig et al. (2003a) which consists of a 

receptor-oriented transport model driven offline by assimilated meteorological fields, 

an Eulerian online transport model and a diagnostic biospheric model is used to 

derive regional flux estimates. The receptor-oriented transport model is the Stochastic 

Time-Inverted Lagrangian Transport (STILT) model  (Gerbig et al., 2003b), the 

Eulerian transport model is the Weather Research Forecasting (WRF) model  

(http://www.wrf-model.org/)  and the biosphere model is the Vegetation 

Photosynthesis and Respiration Model (VPRM) (Mahadevan et al., 2008). The term 

“online” indicates here that the meteorological fields are simulated during the model 

run, while “offline” refers to the use of already simulated meteorological fields. A 

schematic representation of the modeling framework is illustrated in Fig. 5.1.  

 
The wind fields generated by WRF are used in STILT to calculate ensembles of back 

trajectories starting at a receptor location. Resulting footprints (sensitivities to 

upstream surface-atmosphere fluxes) are then mapped to high-resolution surface 

fluxes as well as initial/lateral boundary conditions from a global model. This part of 

the framework – offline Lagrangian modeling system – provides time series of CO2 

mixing ratios at the receptor location. The other part of the framework – the online 

Eulerian modeling system – generates 3D fields of CO2 concentration, using the same 

surface fluxes and boundary conditions as the Lagrangian system. Hence the 

framework allows for a direct comparison of Eulerian (forward) and Lagrangian 

(adjoint) models to assess the consistency in simulating transport, which is a 

prerequisite for using STILT for the inverse estimation of fluxes. 
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Figure 5.1 Schematic diagram showing WRF-VPRM (Eulerian) and WRF/STILT-VPRM 
(Lagrangian) modeling framework. 
 

This chapter presents the simulated CO2 time series generated by the Eulerian and 

Lagrangian transport models at high resolution for the domain over Ochsenkopf in 

Germany. The consistency of those two simulations is assessed with special attention 

paid to the details of horizontal and vertical transport and mixing. The chapter is 

organized as follows: Section 5.2 describes the major components of the modeling 

framework and the model domain. Results are presented and discussed in Sect. 5.3, 

exploring reasons for possible discrepancies between modeled mixing ratios from two 

modeling systems. Section 5.4 provides the conclusion of this study. 

5.2 Modeling Framework 
 
Major components of the Eulerian and the Lagrangian parts of the modeling 

framework – the coupled models WRF-VPRM (Eulerian) which provides spatial and 

temporal distributions of CO2 and WRF/STILT-VPRM (Lagrangian) which simulates 

the temporal distribution of CO2 at the observation point (receptor) – are described 
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here. Including the Eulerian and Lagrangian models in a single framework allows for 

the quantitative comparison between the two different approaches, while using the 

same domain, surface fluxes and initial/ lateral boundary conditions. 

5.2.1 WRF-VPRM model  
 
The mesoscale weather prediction model WRF is used with a passive tracer option 

from WRF-Chem (version 3.0) (Grell et al., 2005) together with the VPRM model to 

simulate the distribution of CO2. The tagged tracer option is used to distinguish 

different components (i.e. biospheric, anthropogenic etc.) of total CO2. A K-diffusion 

scheme with heat exchange coefficient –  hK  – is used in WRF-Chem (hereafter 

referred to as WRF) to account for turbulent vertical mixing of tracers. Note that the 

vertical diffusion of meteorological parameters is performed by the boundary layer 

scheme in WRF. For more details, interested reader is referred to Grell et al. (2005).   

Modifications which are made in the WRF source code for coupling the biosphere 

model VPRM to WRF and to implement simulations of CO2 transport are 

 
Table 5.1  Overview of model set-up used in WRF. 

Vertical 

coordinates 

Terrain-following hydrostatic pressure vertical coordinate 

Basic equations Non-hydrostatic, compressible 

 

Time integration 3rd order Runge-Kutta split-explicit 

 

Spatial 

integration 

3rd and 5th order differencing for vertical and horizontal advection 

respectively; both for momentum and scalars 

 

Time step 36 sec  

 

 

Physics schemes 

Radiation - Rapid Radiative Transfer Model (RRTM) scheme 

(Long wave) and Dudhia scheme (Shortwave) ; 

Microphysics - WSM 3-class simple ice scheme; 

Cumulus - Kain-Fritsch (new Eta) scheme  

PBL – YSU; Surface layer – Monin-Obukhov 

Land-surface – NOAH LSM 
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described in detail by Ahmadov et al. (2007). An overview of the WRF 

physics/dynamics options used here is given in Table 5.1. Past applications of WRF-

VPRM to regional CO2 simulations have shown remarkable skill in capturing fine-

scale spatial variability of CO2 mixing ratios (Ahmadov et al., 2007; Ahmadov et al., 

2009; Pillai et al., 2010b). 

 
VPRM is a satellite-based diagnostic biosphere model (Mahadevan et al., 2008) 

which uses MODIS (http://modis.gsfc.nasa.gov/) satellite indices at high spatial 

resolution to calculate Net Ecosystem Exchange ( NEE ). NEE  is calculated as a 

function of Enhanced Vegetation Index ( EVI ), Land Surface Water Index ( LSWI ) – 

both from MODIS – simulated surface temperature (temperature at 2 meter above 

ground: T2) and shortwave radiation fluxes (SWDOWN) – both provided by WRF. 

SYNMAP data (Jung et al., 2006) with a spatial resolution of 1 km and 8 different 

vegetation classes is used to represent vegetation cover in the domain. The VPRM 

parameters are optimized against eddy flux measurements for different biomes in 

Europe collected during the CarboEurope IP (http://www.bgc-jena.mpg.de/bgc-

processes/ceip/).  

 
In the coupled WRF-VPRM model, VPRM computes biospheric fluxes utilizing the 

meteorological variables from WRF as described above and then passes these fluxes 

to WRF to be transported in the passive tracer mode. Fossil fuel emission data at a 

spatial resolution of 10 km are prescribed from an inventory provided by IER (Institut 

für Energiewirtschaft und Rationelle Energieanwendung), University of Stuttgart 

(http://carboeurope.ier.uni-stuttgart.de/) to account for anthropogenic fluxes. Both 

biospheric and anthropogenic surface flux inputs are projected to the Lambert Conical 

Cartesian co-ordinate system used by WRF-VPRM.  Projection of gridded fossil fuel 

emissions to the WRF grid is done using mass conserving routines. Initial/lateral CO2 

tracer boundary conditions for CO2 tracer are taken from analyzed CO2 fields 

(Rödenbeck, 2005), generated by the global atmospheric tracer transport model, TM3 

(Heimann and Koerner, 2003), based on optimized fluxes transported at a spatial 

resolution of 4° × 5°, and a temporal resolution of 3 hours (ana96_v3.0, 

http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2-3D/). Analyzed 

meteorological fields from the ECMWF model (http://www.ecmwf.int/), at a 
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temporal and horizontal resolution of 6 hours and approximately 25 km respectively, 

serve as initial and lateral meteorological boundary conditions for the WRF-VPRM.  

WRF-VPRM is nested with a horizontal resolution of 6 km (parent) and 2 km 

(nested) as well as 41 vertical levels (lowest layer at about 18 m). Each simulation 

day starts at 18 UTC of the previous day, and continues with hourly output for 30 

hours. The first 6 hours are used as meteorological spin-up time. The initial 

conditions of the tracer concentrations are prescribed from the previous day of the 

simulation except for the first day of simulation where TM3 fields are used as 

mentioned above. The lateral boundary conditions are specified from TM3 fields. 

5.2.2 WRF/STILT-VPRM model  
 
STILT is a Lagrangian Particle Dispersion Model, which simulates ensembles of 

particles representing air parcels of equal mass, transported backward in time from an 

observation point (receptor) by mean winds and sub-grid turbulent winds. The 

turbulent flow is modeled as a Markov chain, where particles are transported at each 

time step using following equation: 

 
'( ) ( ) ' ''( )t t R t t+ Δ = Δ +u u u          (1) 

 
where 'u is the turbulent component of the mean velocity vector u , ''u is a random 

vector drawn from a normal distribution with a width equal to the variance of the 

vertical velocity ( wσ ), tΔ  is the time step, and R is an autocorrelation coefficient 

which determines the standard random walk for the turbulent velocity components for 

each time step. R  is expressed as: 

( ) exp( )
TL

tR t Δ
Δ = −          (2) 

 
where TL is the Lagrangian time-scale in the horizontal (u) or vertical direction (w) 

that determines the degree to which particles keep the memory of previous motion. TL 

is set to zero for a random walk and large TL  represents the advection by mean wind. 

Profiles for TL  and wσ are derived from WRF meteorological fields (Gerbig et al., 

2003b). 

 
Here STILT footprints are driven by meteorological fields from the high-resolution 

mesoscale model, WRF (hereafter referred as “WRF/STILT” to indicate that the 

STILT is driven by WRF meteorology). The WRF-VPRM source code is modified to 
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output the meteorological variables required to drive STILT (Nehrkorn et al., 2010). 

The STILT model has been used extensively in regional simulations and inversion 

studies for different greenhouse gases (Lin et al., 2003; Gerbig et al., 2003b; Lin et 

al., 2004; Miller et al., 2008; Gourdji et al., 2010; Göckede et al., 2010). 

 
WRF/STILT computes changes in the tracer concentration ( , )r rC tx at the receptor 

location rx measured at time rt as the sum of changes in the tracer concentration at the 

receptor due to surface fluxes F in the domain V between initialization time 0t and rt  

(denoted as “ ( , )surface r rC tx ”) and the contribution from the initial tracer field  0( , )C tx ( 

denoted as “ ( , )ini r rC tx ”) (Gerbig et al., 2003b). ( , )r rC tx  is expressed as: 

 

0

3 3
, , , , , 0

( , ) ( , )

( , ) x ( | ) ( ) x ( | ) ( , )
rt

r r r r r r

t V V

surface r tr bg r tr

C t dt d I t t S t d I t t C t

C C

= +∫ ∫ ∫
x x

x x x x x x x
   (3) 

i.e. ( , )r rC tx = ( , )surface r rC tx + ( , )bg r rC tx                 (3a) 
 
Here , ,( | )r rI t tx x is the influence function which links spatially and temporally 

resolved surface source or sinks ,( )S tx to the tracer concentration at the receptor and 

is expressed as: 

, ,( | )r rI t tx x = , ,( | )r r

tot

t t
N

ρ x x                  (3b) 

for a given number of particles ( totN ) released from the receptor and particle density 

, ,( | )r rt tρ x x  at location x  and time t . 

 
The tracer concentration at the receptor due to fluxes F , denoted as ( , )surface r rC tx , is 

expressed as:  

( ), , , , ,
, ,, , 1

1( , ) . . ( )
. ( )

tot

tot

N
air

surface r r p i j k j k i
j k ii j k p

mC t t F x y t
h x y t Nρ =

= Δ∑ ∑x  

 
                  , ,

, ,

( , | , , ). ( )r r j k i j k i

i j k

f t x y t F x y t= ∑ x       (4) 

where ( , | , , )r r j k if t x y tx  is given by 

( , | , , )r r j k if t x y tx = ( ), , ,
, , 1

1
( )

tot

tot

N
air

p i j k
j k i p

m t
h x y t Nρ =

× Δ
× ∑     (5) 

 
Here h  represents the column height into which the tracer is diluted (half of the 

planetary boundary layer (PBL) height in the current application), ρ - the column 
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averaged air density and airm is the molar mass of air. The interested reader is 

refereed to Gerbig et al.(2003b) for more details.  The term ( , | , , )r r j k if t x y tx  links 

surface fluxes to concentration changes at the receptor and is denoted as the 

“footprint”. The footprint derived here is analogous to the adjoint of WRF transport 

(Lin et al., 2003; Gerbig et al., 2003a; Errico, 1997). 

 
A total of 100 particles is released from a receptor point and WRF/STILT transports 

particles backward in time for a maximum of 3 days or until particles leave the 

domain. WRF/STILT is used with a nested option where the wind fields are provided 

at the spatial resolution of the WRF inner domain (2 km × 2 km) until the particles 

leave the inner domain and afterwards at the spatial resolution of the parent domain 

(6 km × 6 km). The footprints are calculated according to equation (5) and are 

gridded to a maximum resolution of 2 km × 2 km. The horizontal size of the grid cells 

for resolving the footprint is dynamically adjusted according to the increase in 

footprint area in order to save computation time as well as to avoid under-sampling of 

surface fluxes when the statistical probability of finding a particle in particular grid 

box becomes smaller (Gerbig et al., 2003b).  

 
The surface fluxes including the VPRM biospheric fluxes, simulated at a spatial 

resolution of 2 km × 2 km, and the IER (anthropogenic) fluxes, interpolated to 2 km × 

2 km are coupled to the transport according to equation (4) in order to estimate the 

associated surface flux contributions to the concentration field at the receptor 

( ( , )surface r rC tx ). The total CO2 concentration at the receptor ( ( , )r rC tx ) is calculated by 

adding the global background tracer distribution –  ( , )bg r rC tx  –  to ( , )surface r rC tx as 

given in equation (3a), where the lateral tracer boundary conditions are prescribed 

from the TM3 global model. Note that the same surface fluxes and initial/lateral 

boundary conditions as given in Sec 5.2.1 are used, but the surface fluxes are 

projected to the Cartesian co-ordinates system used by WRF/STILT. 

5.2.3 Model Domain and Period of Simulations 
 
WRF-VPRM simulations of CO2 and meteorological fields are carried out for the 

period from 2 to 30 August, 2006, and for a single day in 2008 (20th October 2008) 

for a domain centered over Ochsenkopf in Germany (see Fig. 5.2). A period during 

summer (August 2006) is chosen as a case for the comparison of transport models 
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because an increase of biological activity as well as strong variability of diurnal 

patterns of surface fluxes and mesoscale transport can be expected. The period on 20th   

 
Figure 5.2  Model Domains showing topography: The rectangle inside the domain indicates 
the boundaries of nested domain with 2 km × 2 km resolution. The domain outside the nested 
domain is with 6 km × 6 km resolution. The elevation data is from USGS elevation model-
GTOPO30s-with spatial resolution of approximately 1 km. 
 

October 2008, was chosen due to the availability of vertical profiles of CO2 

concentrations measured during an aircraft campaign with the METAIR-DIMO 

aircraft (http://www.metair.ch/) over Ochsenkopf. These profiles provide a quality 

assessment on the performance of the transport models and also assist in finding the 

potential source of any model mismatch. Corresponding to this, WRF/STILT-VPRM 

simulations of CO2 are carried out for different receptor locations around Ochsenkopf 

for the above mentioned periods. The receptor locations correspond to either different 

vertical levels of the Ochsenkopf tower or to the flight-track during the airborne 

measurement campaign at Ochsenkopf.  
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5.3 Results and Discussions  
 
Figure 5.3 shows the time series of CO2 concentrations at 90 m above ground at the 

Ochsenkopf tower site for August 2006 which have been simulated by the 

WRF/STILT-VPRM and WRF-VPRM modeling systems. Both models produce 

similar results as demonstrated in Fig. 5.3 with the squared correlation coefficient, 

R2= 0.67. A summary of the statistics calculated from the model simulations for 

different model levels in the boundary layer is given in Table 5.2. As evident from the  

 

 
Figure 5.3  Comparison of simulated CO2 concentrations (3-hourly averages) between WRF-
VPRM and WRF/STILT-VPRM at 90 m over the Ochsenkopf tower site for August 2006. The 
orange dotted line denotes the WRF/STILT-VPRM prediction when prescribing mixing height 
from WRF. 
 

summary statistics, the models also produced similar results for other model levels in 

the boundary layer. Inter-model differences, e.g. for the 90 m level with a standard 

deviation of about 1.8 ppm, are smaller than model-observation differences (see 

Table 5.2; see Pillai et al.(2010) for observed time-series of CO2 concentrations). 

However, the discrepancies between the simulations, albeit smaller than the model-

observation differences, prompt further investigation, especially since both models 

are driven with same meteorological and surface flux fields. Possible factors that can 

cause these discrepancies are (1) differences in specification of boundary layer  
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Table 5.2  Summary statistics of inter-model and data-model comparisons for different model 
levels (in meters) at Ochsenkopf tall tower observatory for August 2006:  Abbreviations: 
WRF-STILT: WRF-VPRM simulations minus WRF/STILT-VPRM simulations; WRF-
STILT.ziwrf : WRF-VPRM simulations minus WRF/STILT-VPRM simulations using mixing 
height prescribed from WRF; Obs-STILT: Observations minus WRF/STILT-VPRM; Obs-
WRF: Observations minus WRF –VPRM. mean: mean of the differences between data and 
model (data minus model); sd: standard deviations of the differences between data and model 
(data minus model); R2: squared correlation coefficient between data and model. 
 

level 
(m) 

 mean 
[ppm] 

sd 
[ppm] 

R2 

 
WRF-STILT 

 
-1.2 

 
2.2 

 
0.63 

 
WRF-STILT.ziwrf -1.2 2.1 0.68 

 
Obs-STILT -0.8 3.5 0.49 

 

 
 
 
 

23 

Obs-WRF 0.5 3.1 0.62 
 

 
WRF-STILT 

 
-1.1 

 
1.8 

 
0.67 

 
WRF-STILT.ziwrf -1.0 1.9 0.65 

 
Obs-STILT -0.6 3.4 0.51 

 

 
 
 
 

90 

Obs-WRF 0.6 3.3 0.55 
 

 
WRF-STILT 

 
-1.0 

 
1.8 

 
0.65 

 
WRF-STILT.ziwrf -0.9 1.8 0.65 

 
Obs-STILT -0.3 3.0 0.40 

 

 
 
 
 

163 

Obs-WRF 0.8 2.9 0.46 
 

 

parameterizations, (2) potential violation of mass conservation in the driving 

meteorology due to discrepancies in coordinate transformations during data 

processing procedures, (3) differences in input flux fields and (4) different realization 

of advection or convection in the models. Time reversibility of STILT (Gerbig et al., 

2003b) and mass conservation in STILT when using WRF wind fields (Nehrkorn et 

al., 2010) have been confirmed for this setup, ruling out the lack of mass conservation 
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as a possible reason. The following sections examine which of the remaining factors 

contribute to the deviation between the models. 

5.3.1 Consistency check: Explicit and Implicit model parameters 

5.3.1.1 Mixing height Parameterization 
 
A difference in  mixing height (zi) can lead to different vertical distributions of 

surface flux influences to the atmospheric column and can thus cause differences in 

mixing ratios as large as 3.5 ppm (Gerbig et al., 2008). Hence it is appropriate to 

examine the consistency of vertical mixing and associated turbulence parameterized 

in the models. 

 
WRF derives zi using a boundary layer parameterization namely the Yonsei 

University (YSU) scheme (Hong and Dudhia, 2003; Hong et al., 2006) which is 

based on a bulk Richardson number criterion. WRF/STILT also uses the bulk 

Richardson number method locally to calculate zi, utilizing profiles of atmospheric 

variables (temperature and wind) and their gradients provided by WRF.  

 
The bulk Richardson number bRi in both models is calculated as follows: 
 

2 2

, ,
b 

,

( )Ri = 
( )k k

v k v s

v s

gz
u v
θ θ

θ
−
+
                (6) 

 
where g is the field strength of gravity, z  is the height above ground and vθ is the 

virtual potential temperature. u  and v  refer to lateral wind components. The 

subscripts s  and k   refer to the lowest and k th model levels. The mixing height is 

defined as the first level at which bRi becomes greater than the critical Richardson 

number Ric (set to be 0.25).  

 
The mixing height derived from WRF and WRF/STILT at the Ochsenkopf tower site 

for August 2006 is compared and is illustrated in Fig. 5.4a. The iz  derived by WRF-

VPRM is found to be lower than that of WRF/STILT in certain periods of the 

nocturnal boundary conditions. Mixing heights from the two models are not in perfect 

agreement, with a squared correlation coefficient of R2= 0.65. This discrepancy is due 

to the mismatches in deriving iz  during cloudy conditions. A closer look at mixing 

height fields simulated by WRF indicates a strong spatial variability for periods with 

broken cloud cover (not shown), so that the slight differences in horizontal 
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interpolation of the meteorological fields result in large differences in diagnosed 

mixing heights. Indeed, removal of cloudy periods improved the inter-model 

agreement significantly (R2= 0.91). However an average zi discrepancy of about 35 % 

(when using all data) cannot be neglected from causing corresponding deviations in  

 
Figure 5.4  Time-series of (a) mixing height (zi) in meters with inset showing the diurnally 
averaged zi simulated by WRF-VPRM and WRF/STILT-VPRM for August 2006. (b & c) 
Inter-model comparison of Gross Ecosystem Exchange (GEE) and Respiration fluxes (both 
are in the units of 2 1mole/m sμ − ) simulated for the same period. The orange line denotes one-
to-one line. 
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tracer mixing ratios.  The sensitivity of simulated CO2 concentrations to the inter-

model difference in the parameterization of mixing heights is tested by using WRF 

derived zi in WRF/STILT and the results are compared with the standard 

WRF/STILT set-up. Surprisingly, the comparison between standard and modified zi 

set-up in WRF/STILT reveals only slight differences (see orange dotted and black 

lines in Fig. 5.3).  The probable reason for the smallness of the difference between 

these modeled tracer concentrations is the existence of simulated patchy mixing 

height fields as generated by WRF at a spatial resolution of 2 km × 2 km (not shown). 

In the case of patchy spatial patterns of zi , the tracer which was once in the boundary 

layer at one time step can be in the free troposphere (FT) at the next time step. Hence 

the mixing height, which usually acts as a barrier for vertical mixing, cannot act as 

such a barrier for very patchy mixing height fields, when advection over small 

distances can turn mixed layer air into FT air and vice versa. Differences in profiles 

of the variance of turbulent vertical velocities between standard and test runs (WRF-

derived zi) in WRF/STILT (not shown) are negligible, which also indicates that the 

local iz  differences cannot affect the turbulent mixing of tracers. In summary, this 

confirms that the differences in simulated CO2 concentrations between WRF and 

WRF/STILT are not caused by differences in mixing heights. The summary statistics 

of this test run are also included in Table 5.2.  

5.3.1.2 Biospheric Fluxes, VPRM 
 
Discrepancies in the biospheric fluxes between the modeling systems can cause 

differences in simulated CO2. The biospheric fluxes (GEE and Respiration) at the 

receptor location, derived from both modeling systems, are diagnosed for the proper 

treatment of given meteorological fields (temperature and radiation) and the VPRM 

input parameters. Fig(s). 5.4b and 5.4c shows the simulated biospheric fluxes at the 

tower site for the period of August 2006 and suggests that the fluxes are consistent 

between the modeling systems (GEE: R2= 0.9, Respiration: R2= 0.98). A 10 % (2%) 

deviation in simulated GEE (Respiration) between models is caused by the temporal 

interpolation of radiation and temperature fields in STILT. The possible differences 

in CO2 concentrations caused by the flux discrepancy of about 10 % are estimated to 

be only 0.1 ppm (bias). This estimation was based on simulations of CO2 

concentrations generated by STILT with 10 % enhancement in GEE.  Hence it is 
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indicated that the model differences cannot be attributed to biospheric flux 

discrepancies. 

5.3.1.3 Advection Scheme: WRF and WRF/STILT 
 
Another factor which can induce inter-model discrepancy is related to the differences 

in the details of vertical mixing and advection (shear) of both models, as their 

combination is responsible for horizontal spread in simulated plumes. The analysis of 

the vertical structure of tracer transport can give more insight. For this purpose the 

observations of CO2 vertical profiles obtained during the Ochsenkopf aircraft 

campaign are utilized, which can provide qualitative assessment on the model 

simulations. Both models, in general, are able to capture the vertical distribution of 

CO2 variability relatively well and showed similar performance (Pillai et al., 2010a). 

A period on 20th October 2008 is chosen here as an extreme case where WRF-VPRM 

and WRF/STILT-VPRM showed larger deviations. An elevated concentration of CO2 

was found in the valley south of Ochsenkopf (hereafter referred simply as the valley) 

during this period at around 10 UTC (i.e. before the full development of the 

convective mixed layer) (see Fig. 5.5).  WRF-VPRM predicted a large contribution 

from fossil fuel fluxes (determined by using tagged tracer CO2.foss) and simulated 

higher CO2 total concentration in the valley, consistent with observations, while 

WRF/STILT-VPRM failed to capture this large accumulation of CO2 in the valley. 

However, WRF/STILT-VPRM reproduced the CO2 accumulation when the 

contribution from advected fossil fuel emissions (CO2.foss) is replaced with that given 

by WRF-VPRM (not shown). This result reveals that the “missing” accumulation of 

CO2 in WRF/STILT-VPRM during this particular period is due to the failure in 

capturing the advection of the fossil fuel contribution in WRF/STILT-VPRM.  

 
It is perhaps a surprising result when considering other periods in which WRF-VPRM 

and WRF/STILT-VPRM showed similar results on simulating CO2 concentrations. 

Hence it is appropriate to investigate further the causes of this large discrepancy in 

simulating advection of tracers. The following section explores this by conducting 

different model sensitivity tests in WRF/STILT-VPRM, assuming WRF-VPRM gives 

fairly good predictions in this specific period based on its more reasonable 

performance in the above case study. 
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Figure 5.5  The altitude-distance cross-section showing CO2 distribution around Ochsenkopf 
during the DIMO aircraft campaign on 20th October 2008: (a) Observations (b) WRF-VPRM, 
(c) WRF/STILT-VPRM and (d) aircraft track colored with flight altitude range. In a-c: The 
time of the flight are given in purple at the top X-axis. In d: the cumulative distance flown by 
the aircraft are labeled with * symbol. 

5.3.2 Pulse Release Experiment in WRF/STILT and WRF 
 
A more comprehensive comparison of advection of tracers in both models can be 

studied by following simulated trajectories of a plume emitted at a given location. 

This can give an immediate and vivid picture on any possible deviation of advection 

between models.  Hence it is attempted to release an emission pulse from a given 

location where a strong potential influence of surface fluxes (as determined by STILT 
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footprints for the above mentioned extreme period) and a relatively strong fossil fuel 

emission source is found, in order to quantify the effect of this emission on 

downstream CO2 concentrations as simulated by both  models. In this way, one can 

assess the potential reason for the aforementioned missing contribution from advected 

fossil fluxes in WRF/STILT-VPRM. The details of this experiment are as follows: 

 
The emission source is defined in such a way that it emits a “pulse” with a total 

concentration of concS   at a particular time t. To simulate the pulse in STILT, totN  

particles were released from the emission point (48.5 o N, 11.0 o E, release point 8 m 

agl) at 4 UTC and transported forward in time. Note that the source location (the 

above spatial co-ordinate) was defined according to upstream influence locations at 4 

UTC on 20 October 2008, predicted using STILT backward trajectories when 

particles were transported backward from a receptor point (valley) at 10 UTC.   The 

resulting tracer concentration at a specified location downstream .conc STILTR  is given 

by: 

.STILT
R

conc conc
tot

NR S
N

= ×                  (7) 

where RN  is the particle density at the receptor after taking into account air density 

differences between source and receptor locations.  

 
The receptor boxes were defined along the WRF/STILT particle trajectory locations 

at a given time with a horizontal dimension of 6 km × 6 km. The vertical dimension 

of the receptor boxes was roughly equal to the thickness of each WRF vertical layers 

and was placed at the respective WRF vertical level. In this way, one can reproduce 

STILT plume distributions with a grid cell size of 6 km × 6 km and with vertical 

levels corresponding to WRF. 

 
In WRF the pulse emission was implemented as a tagged tracer flux field with a 

spatial resolution of 6 km × 6 km (corresponding to the spatial resolution of plume 

simulations generated by STILT) and with a single non-zero value entry at the 

prescribed source pixel for time t  = 4 UTC. concS  in Eq. 7 was given by the 

corresponding tagged tracer concentration at the first model level (~8 m above 

ground) of the source pixel in WRF.  
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A comparison of the WRF/STILT and the WRF simulated plumes at 10 UTC, when 

the enhanced CO2 was measured near Ochsenkopf, is shown in Fig. 5.6 (a and d) for  

 

 

Figure 5.6  Total contribution of a pseudo-emission source on downstream concentration of 
different receptors predicted by WRF/STILT (forward) under different model parameter set 
up and by WRF models. CO2 concentrations in units of ppm for an atmospheric column from 
surface to 190 m (pressure weighted) simulated by a) WRF/STILT (control run) b) 
WRF/STILT with reduced free troposphere turbulence to 1 cms-1 c) WRF/STILT with reduced 
free troposphere turbulence to 1 cms-1 and reduced Lagrangian time scale-TL= 0.1*TL-original 
and d) WRF are shown. The “+” symbol (in magenta) denotes the source point and the “×” 
symbol (in magenta) denotes the approximate location of the valley (the aircraft location at 
10 UTC) where a large CO2 concentration was observed (see Fig. 5.5). 

 
an atmospheric column from surface to ~190 m (pressure-weighted column average 

of lowest six model levels). The WRF simulated plume reached the aircraft location 

at 10 UTC with its northern edge, while the STILT simulated plume just misses 

it.The models show considerable differences in shape and advection of the plume 

under these nocturnal conditions. A relatively larger horizontal (east-west) spread of 

plume is simulated in WRF/STILT when compared to that in WRF. Also notably, 
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STILT transported the plume much faster from the source point, without leaving any 

presence of plume close to the source location.  

 
The above result provides a clear indication that the interaction of wind shear and 

turbulent diffusion is simulated differently in WRF and WRF/STILT. Note that the 

turbulent transport is realized using K-diffusion in WRF, while a stochastic process 

(Markov chain) is used in WRF/STILT (see Sect(s). 5.2.1 and 5.2.2).  In STILT, the 

spread of the plume is largely controlled by the rate at which the plume is turbulently 

mixed into the residual layer above the mixed layer, where wind speed and direction 

are different. In fact, limiting wσ  (i.e. vertical turbulent velocity variance) to 1 cm s-1 

in STILT reduces the east-west-extent of the plume dramatically. A reason for the 

unusually large values of wσ  in the FT of up to 100 cm s-1 might be the high-

resolution meteorological fields (6km horizontal, and 10 vertical levels below 2km) 

used in STILT to drive the particles, causing much stronger wind shear.  This is due 

to the fact that the parameterization for wσ  in STILT was developed for coarser 

resolution fields. Similarly, the Lagrangian decorrelation time scale TL has some 

control on the residence time at low levels, where winds are slower, after release of 

the plume. It thus controls how strongly the plume is flushed away by advection. 

Indeed, reducing TL by a factor of ten causes the plume intensity close to the source 

location to increase significantly, and tends to result in a plume distribution that 

closer matches the one given by WRF. The intensity of FT turbulence determines the 

dissipation rate and the dilution of plume in the boundary layer. TL determines the 

turbulent mixing between different vertical levels, i.e. larger TL causes the plume to 

be transported faster from surface by the mean-wind.  

 
The above results of sensitivity tests reveal that one can expect differences in 

WRF/STILT-VPRM and WRF-VPRM simulations of CO2, corresponding to 

different tracer advection although the same meteorological fields, surface fluxes, and 

vertical mixing are used. The inter-model differences can be particularly high when 

signatures from strong sources such as fossil fuel emissions are transported from 

larger distances and dominate over those from local sources (e.g. biospheric fluxes). 

To achieve a better match between the Lagrangian and Eulerian transport models at 

high resolution, a refinement of the parameterizations determining the profiles of 

wσ and TL in STILT is required. 
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5.4 Summary and Conclusions  
 
High-resolution simulations of CO2 from online Eulerian (WRF-VPRM) and offline 

Lagrangian (WRF/STILT-VPRM) modeling systems for a domain over Ochsenkopf, 

Germany are presented and the consistency between Eulerian and Lagrangian 

transport models in parameterizing turbulent mixing and in transporting CO2 as a 

tracer is examined. It should be noted that both models are driven with identical 

meteorological fields (from WRF) and surface fluxes (from VPRM). This consistency 

check is carried out as a first step towards applying STILT as an adjoint of WRF in an 

inverse modeling system. The study is motivated due to the fact that the flux 

estimates can be biased if different realisation of turbulence, vertical mixing and 

numerical diffusion exist in WRF and STILT. 

 
Overall, the models show similar performance in predicting CO2 concentrations at 

Ochsenkopf with high inter-model correlations. The factors to which remaining 

discrepancies between the models can be attributed have been investigated further. A 

set of explicit model parameters including mixing height parameterization and 

biospheric fluxes are examined to check the models’ consistency. The inter-model 

difference in local iz  is found to have a negligible impact on simulated CO2 

concentrations between models due to the presence of a leaky boundary layer top, as 

parameterized by the models.  The biospheric fluxes computed by the VPRM model 

are found to be consistent between both modeling systems.  

 
The consistency of advection schemes in WRF and WRF/STILT is further examined 

by simulating CO2 concentrations along an aircraft trajectory in the Ochsenkopf 

aircraft campaign. Both models provided similar results for most of the cases; 

however a short period is found when WRF and WRF/STILT showed a large 

deviation in their simulation of the contribution of fossil fuel fluxes at one of the 

Ochsenkopf valleys. The current sources of the discrepancies during this period are 

identified by conducting an emission pulse release experiment in WRF and 

WRF/STILT. A considerable difference was found in both models in simulating the 

emission plume distribution under normal conditions. Two sensitivity tests were 

carried out to assess the impacts of 1) reduced vertical velocity variance – wσ  –  in 

the FT (Exp.1) and 2) reduced Lagrangian time-scale – TL –  in the entire column 

(Exp.2) on the spatial and temporal distribution of the plume. Exp.1 and Exp.2 give 
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rise to different horizontal and vertical extents of the plume, suggesting that the 

WRF/STILT predictions are highly sensitive to TL and free-tropospheric wσ  . These 

results suggest that a further refinement of wσ and TL is required in STILT when 

driving with high-resolution meteorological fields.  However no firm conclusions can 

be drawn about the relative merits of different advection schemes used in the models. 

In cases which are strongly influenced by advected fluxes, as in the extreme example 

discussed above, the footprints derived from WRF/STILT cannot be expected to 

exactly match the adjoint of WRF. However the similar results provided by WRF and 

WRF/STILT in most of the cases as well as the fact that, the inter-model differences 

are a factor of two smaller than the model-data differences and about a factor of three 

smaller than the mismatch between the current global model simulations and the data, 

justify using STILT as an adjoint model of WRF.   
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6 Scaling Carbon fluxes from point to region using observational 
constraints from flux and mixing ratio measurements 

 
Abstract 
 
A mesoscale inverse technique, using a coupled biosphere-atmosphere modeling 

framework, is presented in order to derive the biosphere-atmosphere exchange fluxes 

with reduced uncertainties. The modeling framework – WRF/STILT-VPRM – 

consists of a weather forecasting model, a receptor-oriented transport model and a 

diagnostic biosphere model, which utilizes the high-frequency observational 

constraints from Ochsenkopf tall tower in Germany together with information 

provided by eddy covariance flux towers and remote sensing data streams. The fluxes 

are retrieved over Europe using inverse method and the reduction in uncertainties of 

these fluxes is assessed. Moreover, these retrieved fluxes (posterior fluxes) are 

compared with direct observations from independent eddy flux measurements. The 

inverse analysis shows large uncertainty reduction in posterior fluxes over Europe.  

The higher dependence of the adjustable scalars of biosphere model on seasonal 

variability suggests the importance of using long-term measurements in the inversion 

framework covering all seasons. In addition, the results show the potential of splitting 

the large domain into parent and nested domains when constraining the regional 

fluxes. Hence it is emphasized that the current estimates of regional CO2 budget can 

be improved with the availability of observational constraints together with 

reasonable prior information and adequate transport, via mesoscale inverse modeling.  

6.1 Introduction 
 
Accurate accounting of source-sink distribution of carbon fluxes is essential in order 

to predict atmospheric CO2 within reduced uncertainty limits and to monitor or 

manage changes in carbon cycle in response to climate anomalies as well as human 

intervention. Atmospheric inversions utilizing atmospheric signatures of trace gases 

have demonstrated its ability to determine CO2 source and sinks at large scale 

(Gurney et al., 2002; Rödenbeck, 2005; Tans et al., 1990). Furthermore, these top-

down (inversion) estimates can be used to validate bottom-up estimates, but also to 

bridge the spatial gap between these two approaches.  
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Long-term measurements in the planetary boundary layer over continents, such as 

those made from tall tower observatories, can provide information on fluxes at 

regional scales. Utilizing high-frequency measurements can improve the reliability of 

inversion estimates (Law et al., 2002). However, the above mentioned measurements 

are often influenced by strong variability of surface fluxes and mesoscale transport 

phenomena (Gerbig et al., 2003a, 2003b), which can complicate the interpretation of 

these measurements in inverse framework. In addition, highly variable surface fluxes 

from areas close to the observatories (near-field fluxes) causes strong variability in 

observed mixing ratio (Gerbig et al., 2009; Lin et al., 2004a), which calls for 

improved a-priori fluxes in the near-field together with their uncertainty estimates as 

well as spatial and temporal error correlations. 

 
The strong variability exhibited in concentration measurements can be better 

reproduced when increasing the spatial resolution of the atmospheric transport 

models and using high-resolution fluxes (Ahmadov et al., 2007; Sarrat et al., 2007; 

van der Molen and Dolman, 2007). Lauvaux et al.(2009) showed significant 

reduction (30%) in mismatch between the modeled and the observed fluxes when 

using inversion at high spatial scale. This suggests the potential of atmospheric 

inversions to improve the flux estimates when transport and prior fluxes are 

adequately represented.  

 
This study uses an inversion technique by deploying a high-resolution modeling 

framework to take into account spatial variability of CO2 at regional scale. The 

modeling framework consists of high-resolution models: the Weather Research 

Forecasting (WRF), the Stochastic Time-Inverted Lagrangian Transport model 

(STILT) and the Vegetation Photosynthesis and Respiration Model (VPRM) to derive 

biosphere-atmosphere exchange on regional scales from measured CO2 mixing ratios.  

Continuous mixing ratio measurements from a tall tower over a mountain region are 

used to constrain the modeling systems.  VPRM uses a set of parameters, for which 

initial values are pre-optimized using eddy covariance measurements of CO2 fluxes. 

The further optimization of these parameters is carried out via the inversion technique 

to match the atmospheric constraint imposed by concentration measurements from 

tall tower observatories. The approach is similar to that of the carbon cycle data 

assimilation system (CCDAS) (Kaminski et al., 2002; Rayner et al., 2005), but with a 

difference that our system operates at a high spatial resolution (e.g. 2 km × 2 km) 
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which is of several orders of magnitude higher  than that of CCDAS (8º × 10º ). This 

has the potential to provide flux estimates that are consistent with both mixing ratio 

and eddy flux measurements, taking into account site specific complexities in flux 

distribution as well as transport. 

 
The outline of the chapter is as follows: Section 6.2 describes the inverse approach 

and different components of the inverse framework. In Sect(s). 6.3 and 6.4, the main 

results are presented and discussed. Section 6.5 provides conclusions of this study. 

6.2 Inverse Approach 

6.2.1 Theory and Techniques 
 
A receptor-oriented inverse modeling framework, as described in Gerbig et al.(2003a) 

and Lin et al. (2004b), which consists of a Lagrangian Particle Dispersion model – 

STILT – together with a biospheric flux model is used to infer the source-sink 

distribution of trace gases from the atmospheric measurements at high spatial and 

temporal resolution. The tracer concentration ( , )r rC x t  at the receptor location 

rx measured at time rt is computed as the sum of changes in the tracer concentration 

at the receptor due to surface fluxes F in the domain V between initialization time 

0t and rt , and the contribution from the advected tracers from the initial tracer field 

0( , )C x t . That is, ( , )r rC x t is expressed as: 

 
0( , ) ( , )r rC x t F C x t= ⋅ + ⋅f I         (1) 

 
Here f denotes footprint elements which links the receptor concentrations to the 

surface fluxes F, and I represents the influence function that relates the initial 

concentration field 0( , )C x t  to the receptor concentrations. See Sect. 6.2.2.2 for 

details about the model domain. The flux estimates (F) are modeled by the surface 

flux model ( )mF p  in which p  represents the model parameters. The linearized 

subset of these parameters, termed as scaling factors (λ ), are optimized (using least-

square fits) against eddy covariance measurements. 

 
The inversion uses the observation constraint to adjust the n  elements of theλ  in 

order to obtain the modeled tracer concentrations to be consistent with the observed 

values. The state vector λ corresponds to the scaling factors of photosynthesis and 



Mesoscale Inversion                                                                                                               Chapter 6 
 

 132 

respiration fluxes from five different vegetation types and two different regions. In 

two regions, one corresponds to the near-field of the observatory and the other 

corresponds to the rest of the model domain (see Sect. 6.2.3.1).  

 
Eq.1 can be re-arranged as: 

0( ( , ))

( , ) ( ) errorr r bg m

C x t

C x t C F λ ε
⋅

− = ⋅ +
I

f        (2) 

 
( )mF λ  is assumed to be linear dependent on λ  and can thus be expressed as: 

( )mF λ λ=Φ           (3) 

 
Combining Eq. 2 and 3 gives rise to a linear model of the form: 

errory λ ε= +K                     (3a) 

where ( ( , ) )r r bgy C x t C= −  denotes the measurement vector and ( )=K fΦ  is the 

Jacobian matrix which gives the sensitivity of the observations to the scalable 

parameters. 

 
The Bayesian inversion incorporates the measured data and a priori information –

priorλ  – together with their uncertainties. The noise – errorε  – is assumed to follow the 

Gaussian distribution described by the error covariance matrices of the measurement 

and prior estimates- eS and priorS . The posterior estimates of λ  are obtained by 

minimizing cost function J:  

 
1 1( ) ( ) ( ) ( ) ( )T T

e prior prior priorJ y yλ λ λ λ λ λ λ− −= − − + − −K S K S     (4) 

 
The state vector of the scaling parameters, at which the cost function is minimized, is 

given by Rodger (2000): 
1 1 1ˆ ( ) ( )T T

e prior e prior prioryλ λ− − −= + +K S K S K S S        (5) 

and the error covariance matrix of λ̂ , i.e. the posterior uncertainty, is given by:  
1 1 1ˆ ( )T

e priorλ
− − −= +S K S K S         (6) 
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6.2.2 Inverse System 

6.2.2.1 Observations  
 
The inverse system uses continuous measurements of atmospheric CO2 concentration 

obtained from one of the observatories in the CHIOTTO (Continuous High-precision 

Tall Tower Observations of greenhouse gases) network – the Ochsenkopf tall tower 

(OXK) in Germany. The tower is instrumented and operated by the Max Planck 

Institute of Biogeochemistry in Germany, and provides continuous measurement of 

CO2 and other trace gases since 2006 (Thompson et al., 2009). The 163 m high 

Ochsenkopf tall tower is located on the mountain top, i.e. at the second highest peak 

(1022 m above sea level) of the Fichtelgebirge mountain range in Germany. The 

major vegetation cover surrounded by the site is coniferous forest. The site was 

selected because of its large-scale representativeness owing to its relatively high 

altitude and the less influence by the urban areas.  

 
The air is sampled at three levels (23, 90 and 163m) on the tower in a 3-hour cycle 

(i.e. measurement at one level for 1 hour duration) and is analyzed for CO2 by LiCor 

gas analyzer – LI-6262 – with a precision of ± 0.02 ppm. For this study, CO2 

measurements from all levels on the tower during different seasons: May (spring), 

August (summer), October (autumn) for the year 2006 and March (winter) 2008 are 

used. The measurements are aggregated to 3-hourly averages after applying data 

quality filters as given by Thompson et al.(2009). The CO2 concentration 

measurement at OXK shows diurnal and seasonal variations, corresponding to the 

changes in surface fluxes and mesoscale transports (Pillai et al., 2010; Thompson et 

al., 2009), and hence has the potential to provide information on surface fluxes. 

6.2.2.2 Atmospheric Transport 
 
The Lagrangian transport model STILT is used to derive the sensitivity of the mixing 

ratio measurements to the changes in the surface fluxes (footprints) and thus to 

provide the information on f and I in the Eq. 1. The STILT, an offline transport 

model which requires wind fields from other sources, is driven here by three 

dimensional transport fields provided by either WRF or ECMWF (European Centre 

for Medium-Range Weather Forecasts).  
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The WRF domain is set up for a region centered over OXK with an area of 

approximately 500 km × 500 km. Two-way interactive nesting is used in WRF with a 

horizontal resolution of 6 km (parent) and 2 km (nest) as well as 41 vertical levels 

(lowest layer at about 18 m). The initial and lateral boundary conditions for the 

meteorology were prescribed from the ECMWF analyzed fields available at temporal 

and horizontal resolution of 6 hours and 25 km respectively. WRF produces hourly 

output for each day (hour 0 to 23) with a simulation starting at 18 UTC of the 

previous day, of which the first 6 hours are used for spin up. The WRF meteorology 

fields are evaluated with different measurement levels of OXK, aircraft 

measurements, surface stations and wind profilers (Pillai et al., 2010).  The physics 

and the dynamics schemes used in the WRF set-up are given in Table 6.1. 

 
    Table 6.1   Physics and dynamics schemes used in WRF set-up. 

 

 

Vertical 

coordinates 

Terrain-following hydrostatic 

 pressure vertical coordinate 

 

Time step 

 

36 sec  

Physics 

Schemes 

Option 

 

Radiation 

RRTM (Rapid Radiative Transfer Model) 

scheme (longwave radiation) (Mlawer, 1997) 

Dudhia scheme (shortwave radiation) (Dudia, 

1989) 

Microphysics  WRF Single Moment (WSM) 3-class simple ice 

scheme (Hong, 2004) 

Cumulus Kain-Fritsch (new Eta) scheme (Kain, 1993) 

Boundary 

layer   

Yonsei University (YSU) scheme (Hong, 2003; 

Hong, 2006) 

Surface layer Monin-Obukhov scheme (Monin and Obukhov, 

1954) 

 

 

 

 

 

 

 

Physics 

schemes 

Land-surface  Noah land surface model (Chen and Dudhia, 

2001) 
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The STILT is set up with a domain covering most of Europe and is nested with the 

WRF domains (outer and inner domains). A number of particles (e.g. 100) were 

released from the receptor point (i.e. OXK) and were transported backward in time 

for maximum of 15 days or until particles leave the entire domain.  The particles were 

driven with WRF meteorological fields at respective horizontal resolutions (2 and 6 

km) until particles leave the WRF domains and later on with ECMWF meteorological 

fields for the rest of the domain. The STILT backward simulations directly provide 

surface influence functions (or footprints, f ) at high temporal and spatial resolutions 

by interpolating the assimilated wind fields down to the measurement location.  These 

functions represent the sensitivity of the mixing ratio measurements to the surface 

fluxes or to the initial and lateral boundary fields, and thus ideally equivalent to the 

adjoint of the transport equation. Note that the results from chapter 5 (Pillai et al., 

2010) indicates that the STILT footprints are similar, but not identical, to the adjoint 

of the driven transport fields.   

 
The STILT footprints are computed at high resolution at the close proximity of the 

tower location (near-field). The horizontal resolution of the grid cells in the footprint 

area was dynamically adjusted with the increasing distance from the tower in order to 

refrain from under-sampling of the surface fluxes when the statistical probability of 

finding a particle in particular grid box becomes smaller, and, as a side effect, to save 

the computation time (Gerbig et al., 2003a). The footprints are mapped to the surface 

fluxes which comprise of biospheric and anthropogenic (emission) fluxes (see 

Sect(s). 6.2.2.3 and 6.2.2.4) to derive the time series of biospheric (CO2veg) and fossil 

(CO2foss) signals at the measurement location.  The advected background signals 

(CO2bg) are obtained by mapping the influence elements derived from STILT to the 

initial CO2 values at the boundary provided by the global model (see Sect. 6.2.2.5). 

The sum of all these CO2 signals gives rise to the total distribution of CO2 at the 

receptor location as given in Eq.1. A measurement-based (“measured”) CO2 

biospheric signal (CO2veg.obs) that is isolated from the total CO2 mixing ratio 

measurements (CO2obs) can be defined as follows (see also Gerbig et al., 2003a): 

 
CO2veg.obs = CO2obs – (CO2foss+ CO2bg)      (7) 
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For this study, pressure-weighted column averages of CO2 up to 163 m above ground 

are used (see Sect. 6.2.2.1). Using column averages reduces the problems in terms of 

resolving vertical structure of CO2 in the model.     

6.2.2.3 Fossil fuel emission fluxes 
 
High-resolution fossil fuel emission data provided by Institut für Energiewirtschaft 

und Rationelle Energieanwendung (IER), University of Stuttgart 

(http://carboeurope.ier.uni-stuttgart.de/) is used to account for anthropogenic CO2 

emission. The emission inventory contains hourly emissions of greenhouse gases for 

the year 2000 at a spatial resolution of 10 km. In order to adapt these data for the 

simulation year, a day-of-week shift is introduced to preserve the temporal emission 

patterns (week vs. weekends), assuming no changes in the emission fluxes between 

years 2000 and 2006. The fluxes are interpolated to 2 km spatial resolution for the 

nested domains in STILT (i.e. WRF domains) and 10 km fluxes are used for the rest 

of the domain. 

6.2.2.4 Biospheric (a priori) fluxes 
 
The prior biospheric fluxes are provided by a diagnostic biosphere model, the VPRM 

(Mahadevan et al., 2008), which uses remote sensing, eddy covariance tower and 

meteorological data at high temporal and spatial resolutions. The model utilizes the 

remotely sensed data from MODIS satellite (http://modis.gsfc.nasa.gov/) and 

simulated or site meteorology to represent vegetation properties and ecosystem 

functional responses. The 8-day averaged satellite indices – the Enhanced Vegetation 

Index ( EVI ) and the Land Surface Water Index ( LSWI ) after applying loess (locally 

weighted polynomial regression) filtering – are used to provide the information on 

water stress and leaf phenology. VPRM simulates hourly Net Ecosystem Exchange 

( NEE ) between the biosphere and the atmosphere as the sum of Gross Ecosystem 

Exchange (GEE ) and ecosystem Respiration ( R eco ): 

 
0(1/ [1 ( / )]) ( )

R
scale scale scale

eco

NEE T P W PAR PAR EVI PAR T
GEE

γ α β= − × × × × + × × + × +   (8)  

where 0,, PARγ α and β  are the VPRM parameters, PAR  is the photosynthetically 

active radiation and T denotes the surface temperature. scaleT , scaleP  and scaleW  are 
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scalars for temperature, phenology and water stress (see Mahadevan et al., (2008) for 

more details). 

 
The VPRM parameters for different vegetation types are initially determined by 

fitting Eq. 8 to the eddy covariance data. The simulated shortwave radiation 

(SWDOWN) and the surface temperature (T2) provided by either WRF or ECMWF 

are used to represent PAR  and T respectively in Eq. 8. The 1-km global land cover 

product SYNMAP (Jung et al., 2006) provides the information on vegetation cover in 

the domain. To obtain a priori estimates of biospheric fluxes, the VPRM parameters 

are optimized against eddy flux observations, measured during the CarboEurope IP 

experiment, from various sites under different vegetation types within Europe. For the 

optimization, it is restricted to using the data from the flux sites outside the nested 

domain (“calibration sites”). The flux sites within the nested domain (“validation 

sites”) are further used to evaluate the VPRM predictions before and after inversions 

(i.e prior vs. posterior). See Fig. 6.1 for nested part and rest of the domain. 

6.2.2.5 Initial and lateral boundary conditions 
 
The contribution to the observed CO2 mixing ratios by the initial concentrations at the 

boundary can be realized by prescribing CO2 fields from a global model. The 

analyzed CO2 concentration fields given by the Tracer transport model, TM3 

(Heimann and Koerner, 2003) are used as the initial and lateral CO2 tracer boundary 

conditions. The global tracer concentrations used for this study are at 4° × 5° 

horizontal resolution, 19 vertical levels and 3-hourly temporal resolution 

(http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2-3D) and are 

generated by a forward transport simulation of fluxes that have been optimized using 

a global network of CO2 observing stations (Rödenbeck, 2005). 

6.2.3 Set-up of inversion 

6.2.3.1 Definition of the State Vector and Jacobian matrix 
 
The state vector and the Jacobian matrix are defined as followed by Gerbig et 

al.(2006) but with a difference that these are retrieved for the VPRM instead of a 

simple Light Use Efficiency (LUE) model as used in Gerbig et al.(2006). The state 

vector λ (quantities to be retrieved) is represented by a set of scaling factors which 

are used to scale up and adjust biospheric fluxes. These scaling factors are defined for 
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two processes: GEE  (or Photosynthesis- light dependent term) and R eco  (light 

independent term) and are specific for each vegetation classes. A total of five 

vegetation classes are used for this study: evergreen forest, deciduous forest, mixed 

forest, crop and grass. The scaling factors are also specific for the nested region and 

the rest of the domain (see Fig. 6.1); hence the total length of the state vector is 20 

(2×5×2). The prior values for all scaling factors ( priorλ ), corresponding to the VPRM 

fluxes optimized with eddy flux stations, are set to one. 

 
The Jacobian matrix K relates the measurement vector y  to the state vectorλ  and 

has elements that represents the response in mixing ratios to the fluxes (GEE  and 

R eco ) for different vegetation classes- specific for the nest and the rest of the domain. 

The total size of K is thus n ×20 in which n is the length of the measurement vector. 

The posterior estimates of the scaling factors ( postλ ) are derived by minimizing the 

cost function, J, as given in Eq.4. 

 

 
Figure 6.1  Model domain showing nested and rest of the domain. The WRF outer domain is 
used as the nested domain in the STILT. 
 
 
 



Mesoscale Inversion                                                                                                               Chapter 6 
 

 139

6.2.3.2 Error Covariance Matrices 
 
The diagonal elements of the prior error covariance matrix priorS  are estimated to 

50% for GEE  and 100% for R eco , roughly corresponding to the day-time and the 

night-time residuals between the eddy flux observations from the CarboEurope flux 

sites and the modeled prior fluxes.    

 
The error covariance matrix eS , accounting for the model-data mismatch, combines 

the error covariance in the “measured” vegetation signal (CO2veg.obs, using Eq.6.) – 

vegS  and in the modeled transport – transS . A measurement uncertainty of 2 ppm is 

assumed which also includes “representation error” that can be introduced due to 

insufficient grid resolution to resolve the changes in surface fluxes. Any cross-

correlations in the measurement uncertainties are neglected and hence a diagonal 

matrix with diagonal elements of 2 ppm is used to represent vegS . The transS  

describing uncertainties in mixing heights as well as transport fields, is set to 30 % of 

the vegetation signal with a minimum value of 0.3 ppm during day-time and to 100 % 

of the nocturnal enhancement of the signal, with a minimum value of 1 ppm during 

night-time. A temporal correlation for this transport error is set to 12 hours, in 

accordance with the typical model-data mismatches for vertical mixing of tracers 

(Gerbig et al., 2008). The uncertainty introduced when excluding ocean fluxes is 

assumed to be negligible due to relatively small coverage of the ocean in the domain. 

Note that CO2 fields from the TM3 are used at the boundary which includes oceanic 

exchange fluxes from Takahashi et al.(2002).  

6.3 Results 

6.3.1 Optimization of VPRM parameters against eddy flux measurements 
 
The VPRM parameters ( ,γ α andβ ) are initially optimized for each vegetation 

classes using half hourly averaged eddy flux measurements (“prior optimization”) 

from 13 calibration sites in Europe for the whole year 2006. These sites represent 

different vegetation classes in VPRM. The parameters are optimized using a non-

linear least square method as followed by Mahadevan et al.(2008). The fluxes are 

estimated using air temperature and PAR measured at respective tower sites. Figure 

6.2 shows daily averages of flux observations ( NEE ) from certain calibration sites 
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together with flux estimates using the VPRM parameters before and after prior 

optimization. On adjusting the parameters, VPRM could reproduce the spatial and 

temporal patterns of the observed NEE  with remarkable fidelity. These optimized 

 
             Table 6.2  Overview of the VPRM parameters used for estimating prior fluxes.  
 

VPRM class γ  α  β  0PAR  

Evergreen 0.282 0.112 1.841 0.13 

Deciduous 0.152 0.137 0.418 0.09 

Mixed forest 0.361 0.240 -0.084 0.13 

Cropland 0.085 0.159 -0.420 0.081 

Grassland 0.175 0.133 0.294 0.070 

 

 
Figure 6.2  Comparison between daily averaged flux observations (NEE) for typical stations 
over Europe and those generated by the VPRM model (before and after prior optimization). 
The black circles represent observation; orange and blue lines denote VPRM simulated 
fluxes before and after optimization with flux data respectively. 
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Table 6.3  Overview of the flux stations that are used as calibration and validation sites. The 
sites given in the italics are located inside the nested domain and are not used for the prior 
optimization of the VPRM scalars. 
 

Sites Abbrevation Lat/Lon VPRM class 

Lonzee BE-Lon 50.55 N/4.75 E Crop 

Vielsalm BE-Vie 50.30 N/6.00 E Mixed forest 

Gebesee DE-Geb 51.10 N/10.91 E Crop 

Grillenburg DE-Gri 50.95 N/13.51 E Grassland 

Hainich DE-Hai 51.08 N/10.45 E Deciduous  

Klingenberg DE-Kli 50.89 N/13.52 E Crop 

Tharandt DE-Tha 50.96 N/13.56 E Evergreen 

Wetzstein DE-Wet 50.45 N/11.46 E Evergreen 

Rimi DK-Lva 55.69 N/12.12 E Grassland 

Las Majadas del Tietar  ES-LMa 39.94 N/5.77 W Evergreen 

Kaamanen FI-Kaa 69.14 N/27.29 E Others 

Fontainbleu FR-Fon 48.48 N/2.78 E Deciduous 

Le Bray FR-LBr 44.72 N/0.77 W Evergreen 

Laqueuille intensive FR-Lq1 45.64 N/2.74 E Grassland 

Laqueuille extensive FR-Lq2 45.64 N/2.74 E Grassland 

Puechabon FR-Pue 43.74 N/3.58 E Evergreen 

Carlow crop IE-Ca1 52.86 N/6.92 E Crop 

Collelongo IT-Col 41.85 N/13.59 E Deciduous 

Roccarespampani1 IT-Ro1 42.41 N/11.93 E Deciduous 

Loobos NL-Loo 52.17 N/5.74 E Evergreen 

Griffin UK-Gri 56.62 N/3.8 W Evergreen 

 

parameters (see Table 6.2) can be hence used to compute the prior fluxes for the 

model domain which will be discussed in the following section. A list of calibration 

and validation sites is given in Table 6.3. 

6.3.2 STILT footprints 
 
The footprints are derived from particle trajectories for 15 days backward in time in 

which particles were released from OXK tower location. The footprint analysis shows 

the areas that have major influence on the tower measurements. Figure 6.3 shows 
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time-integrated footprints for tower observations at 23 m level, averaged during the 

period from 6 to 30 August 2006. Noticeably, the footprints extend to a large area, 

covering most of Europe, with spatial patterns corresponding to the different synoptic 

situations. The surface fluxes at the regions with higher values of footprints (given in 

units of 2 1ppm / ( mole/m s )μ −  have greater influence on measured concentration at the 

tower. The analysis shows higher influence of near-field surface fluxes on tower 

measurements compared to far-field surface influence, which is as expected. As the 

footprints drop off sharply with distance (as seen in Fig. 6.3), the CO2 fluxes at the 

near-field will be weighted strongly in resulting changes in total CO2 signal.  The 

footprints weighted by the VPRM fluxes (given in ppm, shown at inset in Fig. 6.3) 

displays sensitivities of biospheric fluxes ranging from -10 to +1 ppm at OXK near-

field.  

 
Figure 6.3  Time-integrated footprints for tracer observations at the tower at an altitude of 
23m above ground that are averaged during the period from 6 to 30 August 2006. Color 
scale is in units of 2 1ppm / ( mole/m s )μ − , and contour lines indicate areas contributing to 
50, 90 and 99 % of the influence to measurements made at the Ochsenkopf. The inset shows 
those footprints weighted by VPRM prior fluxes. 
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6.3.3 Prior and Posterior Biospheric signal 
 
The (observation based) biospheric CO2 signal (CO2veg.obs) is derived using Eq. 7 in 

which the contributions from fossil and background signals are simulated using 

STILT-VPRM.  The model simulates biospheric signals using the prior optimized 

VPRM model parameters. The posterior biospheric signals are derived using adjusted 

scaling parameters ( postλ , see Sect. 6.3.4) that minimize the model-data mismatch. 

The pressure weighted column averages of CO2veg comprising measurements from all 

levels are used for analysis (see Sect. 6.2.2.2).  A comparison of column averages of 

the observed and the modeled biospheric signals at OXK for a period from 6 to 30 

August 2006 is shown, as an example, in Fig. 6.4. The given time period is chosen 

due to its enhanced biospheric activity and the existence of strong diurnal patterns in 

transport and fluxes. CO2veg.obs at OXK shows strong diurnal, seasonal and synoptic 

variations, reflecting the strong variability of surface fluxes and mesoscale transport. 

The model simulates diurnal variations reasonably well (see inset in Fig. 6.4), by 

adequately representing the changes in environment drivers (such as temperature and 

solar radiation), changes in influence locations and changes in biospheric fluxes (sign 

shifts during day and night times). The model also reproduces synoptic variabilities 

with remarkable fidelity. For example a large positive (respiration) signal during a 

cold front passage over OXK on 18th August 2006 was captured in STILT-VPRM, 

although with a considerable bias of ~7 ppm. The comparison of the observed and the 

modeled CO2veg for different seasons indicates its ability to predict seasonal 

variabilities observed at the tower (not shown). 

 
The prior and posterior signals are of comparable quality as seen in Fig. 6.4 and also 

as indicated in summary statistics with similar correlations and standard deviations 

between observations and simulations. It should be noted that these differences, 

although in small magnitudes, are caused by changes in surface flux fields (prior vs. 

posterior) that are associated with significant differences in the regional flux budgets. 

6.3.4 Scaling Parameters and Uncertainty Reduction 
 
To provide some flexibility to adjust the parameters spatially, the inverse 

optimization of VPRM scalars is carried out by using fluxes at spatial resolution of 2 

and 10 km for the nested part and the rest of the domain, respectively. Hence postλ for 

different vegetation types are specific for these two domains as mentioned in Sect. 
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6.2.3.1. Note that priorλ for all vegetation types is set to 1 with 50% uncertainty for 

GEE  and 100% for R eco . The scalars are adjusted differently for two domains (e.g. 

see Fig. 6.7; more discussion in section 6.4.1). The postλ  which are greater (less) than 

unity indicates the underestimation (overestimation) of the prior fluxes compared to 

the posterior estimations. When postλ is close to unity, it indicates that the prior flux 

estimates agree well with the posterior fluxes.  

 
Figure 6.4  Comparison of 3- hourly time series (column averaged) of observed (see Eq.7) 
and modeled (both prior and posterior) biospheric signals at OXK for a period from 6 to 30 
August 2006. The inset shows the diurnally averages of these signals. The standard 
deviations of data-model mismatch (indicated by “sd”) as well as correlations (indicated by 
“r”) for prior (denoted as “.prior”) and posterior fluxes (denoted as “.post”) are shown 
inside the figure. 
 
The reduction in uncertainty, labeled ρ , for the individual elements of λ  can be 

expressed as: 
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1 post

prior

σρ
σ

= −             (10) 

where the σ ’s are the square root of the diagonal elements of the corresponding 

covariance matrix. During August 2006, the posterior uncertainties are reduced 

considerably for crop with ~60 % uncertainty reduction for GEE  and ~80 % for R eco  

(e.g. see Fig. 6.8; more discussion in Sect. 6.4.1). The uncertainties are reduced to 

~35% for mixed forest for both GEE  and R eco . For evergreen forest, the uncertainty 

reduction for the nested (rest) domain is ~40% (~35 %) for R eco , whereas for GEE , 

it is ~18 % (~41%) for the nest (rest). For other vegetation types (deciduous forest 

and grass), the uncertainty reductions are small (below 10%). The details for other 

seasons are described in Sect. 6.4.1.  

 
Figure 6.5  The spatial distribution of uncertainty reduction for posterior fluxes- a) GEE and 
b) Reco  over Europe for August 2006. 
 
The uncertainty reductions of posterior fluxes are estimated by weighting ρ  with 

vegetation fraction. Figure 6.5 shows the spatial distribution of uncertainty reduction 

for posterior fluxes (separated for nest and rest of the domain) over Europe for 

August 2006. Notably, the posterior uncertainties are reduced considerably over 

Europe for both GEE  and R eco . It should be mentioned that the crop covers a large 

part of vegetation over Europe (see Table 6.4).  However, the coastal and mountain 

regions are marked with less uncertainty reductions. The dominant vegetation types 

for these regions are either deciduous forest or grass for which values of the ρ  are 

low. 
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Table 6.4  Fraction of relative coverage of vegetation type for nested and parent domains. 
 

VPRM class Nested 

Domain 

Parent 

domain 

Evergreen 0.09 0.11 

Deciduous 0.08 0.06 

Mixed forest 0.14 0.09 

Cropland 0.68 0.68 

Grassland 0.01 0.06 

6.3.5 Prior and Posterior flux 
 
The posterior fluxes are computed using postλ derived from inverse optimization. 

Figure 6.6 shows, as an example, the monthly averaged spatial distribution of prior 

and posterior fluxes at a spatial resolution of 10 km over Europe for August 2006 at 

14 UTC.  

 
Figure 6.6  Spatial distribution of monthly averaged prior and posterior fluxes at a spatial 
resolution of 10 km over Europe for August 2006 at 14 UTC. The panels from left to right 
denote GEE, Reco and NEE respectively. The top panels show prior fluxes, middle panel gives 
posterior estimates and the bottom panels represent difference between prior and posterior 
fluxes. 
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The posterior fluxes are estimated using postλ separately for the nest and the rest of 

the domain. For these flux estimations, the temperature and radiation fields generated 

from the ECMWF model are used. Note that the WRF simulated fields are only 

available here for a smaller domain as mentioned previously. A relatively large CO2 

uptake can be seen during growing seasons over Europe, as indicated by large 

negative values for prior and posterior GEE  and NEE . Positive values of NEE  

(CO2 release) are found at the southern part of Europe (part of Spain and Turkey) 

where higher atmospheric temperature was simulated. Note that Reco is linearly 

dependent on temperature. In general, the prior fluxes are slightly larger when 

compared to posterior estimations. This can also be seen as reduced postλ for most of 

the vegetation types for both processes. 

6.4 Discussion 

6.4.1 Seasonal dependence of scaling factors 
 
As seen in previous sections, the atmospheric measurements from the tower can 

provide important constraints for the VPRM scalars, allowing for flux retrieval at 

reduced uncertainty limits. The previous sections show the results from the mesoscale 

inversions using tower measurements from summer period where strong variability of 

surface fluxes and mesoscale transports are expected. Since diurnal patterns of 

biospheric fluxes and mesoscale transports vary seasonally, producing changes in the 

observed atmospheric CO2 concentration, it is appropriate to examine the seasonal 

dependence of postλ . For this, mesoscale inversions are conducted using tower 

measurements from different seasons separately (see Sect. 6.2.2.1), using the same 

prior VPRM scaling factors (see Sect. 6.2.2.4). Figure 6.7 shows the seasonal 

variability of postλ together with their uncertainty estimates for different vegetation 

types. Notably, the postλ  is found to be considerably different among the seasons for 

both GEE  and R eco . This result indicates the importance of using long-term 

measurements in the inverse framework which can constraint seasonal variability of 

surface fluxes. 

 
The ρ  of these scalars (see Sect. 6.3.4) for different seasons is shown in Fig. 6.8. 

The estimate of ρ  depends on observational constraint as well as prior uncertainties. 

Consistent with the results for the summer period, ρ  is found to be the largest for 
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cropland during other seasons also, however ρ  for GEE  is insignificant during the 

winter period. The other vegetation types – the deciduous and grassland – have low 

ρ  for all seasons which indicates that the OXK measurements have only minor 

influence from these vegetation classes and thus cannot be expected to provide strong 

constraints on optimizing postλ  for these classes. Additional tower and 

 
Figure 6.7  The seasonal variability of VPRM scalars together with their uncertainty 
estimates for different vegetation types. The grey and light blue bands indicate the 
uncertainty of scalars from the nest and the rest of the domain respectively. The prior scaling 
factor is 1, indicated as green line and the uncertainty of prior scaling factors are shown as 
error bars at the extreme left side of each panel. 
 
airborne measurements at other locations, which exist but have not been used in this 

framework, can provide more constraints on carbon fluxes at large spatial scales, 

giving more reliable predictions of regional carbon budgets. Here the focus is on 

assessing the information that can be retrieved with this mesoscale inverse modeling 

framework for a single location with complex terrain. 

 
The analysis show that ρ  is larger for GEE  (in particular for evergreen forest) in the 

nested domain compared to that in the rest of the domain, which indicates the 

importance of splitting the domain during inversion. A simple biospheric model like 

the VPRM – constrained with remote sensing and eddy covariance data streams – can 
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be a powerful tool to generate fluxes at high temporal and spatial scales which can 

greatly enhance the reliability of carbon budgets.      

 
 

Figure 6.8  The uncertainty reduction of posterior fluxes – GEE (top panel) and Reco (bottom 
panel) – of different vegetation classes during different seasons. The panel from left to right 
shows different vegetation classes as indicated inside each graph. 

6.4.2 Flux comparison: Observed vs. modeled 
 
The mesoscale inverse analysis illustrated the potential of using high-resolution 

transport and prior fluxes together with high-frequency (3- hourly) observational 

constraints to retrieve the information at reduced uncertainty limits.  The mismatch 

between the modeled and the observed atmospheric CO2 concentrations can be 

caused by uncertainties in prior fluxes (such as improper prior optimization 

(calibration) of the VPRM parameters and inadequate representation of processes) as 

well as transport error. Adjusting the scalars for each vegetation classes to best fit the 

observations increases the correlations of time series and diurnal patterns slightly (see 
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Fig. 6.4). However, only small changes in the general pattern of monthly averaged 

fluxes were found (see Fig. 6.6).  

 
As a further investigation to this, the posterior fluxes from the nested domain are 

compared against observations from eddy flux sites. Note that these measurements 

used for comparison are completely independent of inversion analysis, as they were 

kept as validation sites (see Sect. 6.2.2.4). Since postλ shows strong dependence on 

seasonal variability and greater uncertainty reduction in posterior fluxes for cropland, 

followed by evergreen, the comparison of fluxes from these vegetation sites are 

shown for different seasons in Fig. 6.9 (winter is not included due to the limited 

availability of flux data in the area). The prior and posterior fluxes are able to capture 

the diurnal patterns of the observed fluxes. The enhanced biospheric activity (larger 

negative values) can be seen at the spring and the summer seasons when compared to 

the autumn season, however the reduced biospheric activity was observed at 

Klingenberg station (cropland) for the summer season that can be associated with the 

crop harvesting period.  

 
For all these stations, the prior and the posterior fluxes have similar performance with 

smaller changes between them. The cropland where inversion produced the largest 

uncertainty reductions for all seasons (i.e. more constrained with atmospheric 

information) showed no further improvement at direct flux comparison. This can be 

due to two reasons: the existence of 1) a good prior or 2) transport errors in the 

inverse framework.  The latter can be the most likely reason; however a further study 

is required to investigate the issues in detail. An enhancement in the positive fluxes of 

NEE  (i.e. respiration signal) was observed at Klingenberg station during 5 to 10 

August 2006, which was not captured by VPRM (neither in simulating prior nor in 

posterior fluxes). The WRF simulations show rain event (with maximum of ~15 mm) 

during this period and thus an increment in soil moisture. A well correlation was 

found between the respired flux and the soil moisture (figure is not shown) which 

suggests the structural improvement of VPRM to take into account of the soil 

moisture to calculate Reco.  
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Figure 6.9  Comparison of prior and posterior fluxes with observations from validation sites 
(DE-Wet and DE-Kli: Abbreviations of site names as in Table 2a) for different seasons. The 
panels from top to bottom indicate different seasons- May (spring), August (summer) and 
October (autumn) of the year 2006. The left panels indicate the site, DE-Wet and the right, 
DE-Kli. The vegetation type of the site is indicated in title within brackets. 
 

6.5 Conclusions 
 
A mesoscale inversion framework using high-frequency observational constraints 

from Ochsenkopf tall tower as well as high-resolution transport and prior fluxes 

provided by WRF/STILT-VPRM modeling framework is presented in order to 

estimate the regional carbon fluxes with reduced uncertainties. The framework also 

utilizes the information provided by eddy covariance flux measurements and remote 

sensing data streams which are used to constrain prior fluxes in the inverse analysis. 

Hence this approach has the potential to provide the flux estimates that are consistent 

with both mixing ratio and eddy flux measurements.  
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A simple biospheric model – the VPRM – could capture reasonably well the spatial 

and temporal variability of CO2 fluxes by using information from satellite and flux 

tower observations.  Using the VPRM fluxes specified at high and temporal 

resolution can thus reduce the uncertainties associated with the representation of prior 

fluxes. In addition, the simple mathematical structure of the VPRM enhances the 

flexibility of optimizing respiration and photosynthesis fluxes separately in the 

inverse analysis. However, an enhancement in the positive fluxes of NEE observed in 

an eddy covariance flux station at Klingenberg could not be captured by the VPRM 

due to its structural deficiency in incorporating the effect of soil moisture to calculate 

the respiration fluxes. This suggests the importance of incorporating the soil moisture 

in parameterizing respiration fluxes in VPRM. 

 
The inverse analysis shows large reduction in uncertainly of fluxes for cropland, 

followed by evergreen and mixed forests for both GEE  and R eco .  As cropland 

covers most of the domain, the inversion generated large uncertainty reduction when 

deriving posterior fluxes over Europe. However, other vegetation types (the 

deciduous forest and the grassland) showed insignificant uncertainty reductions. This 

could be due to insufficient observational constraints to adjust the VPRM parameters 

for these vegetation types in the inverse analysis, i.e. the Ochsenkopf tower 

measurements alone might not be enough to constraint the VPRM scalars for all 

vegetation types.  The higher dependence of the VPRM scalars on seasonal variability 

suggests the importance of using long-term measurements in the inversion framework 

covering all seasons. In addition, the results from nested domain show the potential of 

splitting the domains to constrain the regional fluxes. 

 
The direct comparison between the observed and modeled fluxes at the validation 

sites produced similar performance between the prior and the posterior fluxes, 

although exists small differences between them. A further study is required to 

investigate whether these are caused by the transport errors in the inverse system. The 

validation of transport models with airborne measurements can greatly enhance the 

understanding of transport uncertainties in the model and can be used for further 

model development. It is thus emphasized that the current estimates of regional CO2 

budget can be improved via mesoscale inverse modeling, with the availability of 

more observational constraints together with reasonable prior information and 

adequate transport.  
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7 Conclusions and Outlook 
 
The main conclusions of the thesis are given here as brief answers to the scientific 

questions which were raised in Sect. 1.6 (Thesis Objectives), together with possible 

future developments of the results (under the heading Outlook, specific for each 

chapter). 

 
1. How much of the spatial variability of atmospheric CO2 concentration 

cannot be resolved by current global models?  
 
Chapter 3 addresses this question. Based on high-resolution model simulations, a 

quantitative assessment of spatial variability of CO2 over Europe is carried out in the 

context of utilizing satellite retrievals of column-integrated atmospheric CO2 

concentrations in global inverse models with a horizontal resolution of about 1 degree 

or more. The spatial scale mismatch between remotely-sensed CO2 and global models 

can induce so-called representation errors of up to 1.2 ppm, which is above the 

targeted precision of most satellite measurements. This may lead to a systematic bias 

in flux estimates when using inverse modeling approaches. The analysis with a 

hypothetical satellite (A-SCOPE) track together with MODIS cloud pixel information 

shows a larger representation error of 0.39 ppm over land compared to other regions. 

The results clearly indicate the necessity of using high-resolution simulations to 

assess variability on scales not resolved by global models.   

 
2. Can we parameterize this variability in coarser models without using 

high-resolution simulations? 
 

Knowledge about the size and the spatial and temporal patterns of the representation 

error is expected to improve inverse modeling of satellite data. Avoiding the 

representation error would involve using a high-resolution model to estimate the 

representation error, but is computationally very expensive and hence not feasible in 

global inverse modeling systems.  Chapter 3 demonstrates a potential way of 

describing representation error in coarser models without increasing the spatial 

resolution of the models. A linear model is constructed, separately for day- and 

nighttime, to parameterize the sub-grid scale variability (or representation error) as a 

function of local, grid-resolved variables, such as terrain heterogeneity, surface flux 

variability and mean CO2 mixing-ratio at the surface. The proposed linear model
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(using all three variables mentioned above) could explain about 50 % of the spatial 

patterns in the bias component of the subgrid variability during day- and nighttime. 

These findings suggest a parameterization which would enable a substantial fraction 

of the representation error to be taken into account more quantitatively, without using 

high-resolution transport models. 

 
Outlook (1 & 2): 
 
Future steps involve implementation of this parameterization in an inverse modeling 

system. An assessment using pseudo-data experiments has to be carried out to 

determine the degree to which biases in retrieved fluxes due to representation error 

can be avoided. A further refinement of the method would treat the subgrid variance 

as a tracer itself, allowing for advection of subgrid variance within the coarse 

transport models similar to the study by Galmarini et al. (2008), but with a focus on 

mesoscale variability. This would also allow for the better description of the 

representation error over the ocean near the coasts, which with the current linear 

(local) model cannot be described. It is anticipated that the retrieved information, 

such as regional carbon budgets and uncertainties, will improve significantly when 

including such a realistic description of the representation error into a data 

assimilation system that uses remotely-sensed column CO2.  

 
3. What is the effect of complex mesoscale flows on the observed 

atmospheric CO2 fields? Can we represent this effect in the model? 
 
Chapter 4 addresses this question by utilizing the measurements from the Ochsenkopf 

tall tower observatory (OXK), located in complex terrain on the second highest peak 

of the Fichtelgebirge mountain range in Germany, as well as using profiles from an 

airborne campaign at Ochsenkopf.  The detailed analysis of two case studies 

concluded that the mesoscale transport features, such as mountain waves and 

mountain-valley circulation, can have a strong influence on the observed atmospheric 

CO2 at OXK by changing the vertical mixing of the tracer concentrations. The 

meteorological simulations indicate that the buoyancy-driven drainage flows are more 

common at OXK during nighttime (especially in summer) and that mountain gravity 

waves are likely to occur in winter periods.  The study shows that these effects can be 

reproduced reasonably well with high-resolution models at a spatial resolution of       
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2 km by appropriately representing mesoscale transport processes, such as advection, 

convection and vertical mixing as well as surface flux influences in the near-field. 

 
4. How well are measurements from complex sites such as mountain 

observatories reproduced by the high-resolution modeling framework 
compared to current global models?  

 
Chapter 4 further explores the advantages of using a high-resolution modeling 

framework to address the representativeness of greenhouse gas measurements when 

compared to coarse resolution models over a complex terrain associated with 

surrounding mountain ranges. The study utilizes available measurements obtained 

from OXK for different seasons and from an aircraft campaign together with a high-

resolution modeling framework consisting of Eulerian- and Lagrangian-based tracer 

transport models. The spatial and temporal patterns of CO2, caused by mesoscale 

flows and strong variability of surface fluxes (fossil fuel emissions and biosphere-

atmosphere exchange) that are common for complex sites such as mountain stations, 

are reproduced remarkably well by the high-resolution models for different seasons 

when compared to the coarse model. This emphasizes the importance of using high-

resolution modeling tools in inverse frameworks, since a small deviation in CO2 

concentrations can lead to potentially large biases in flux estimates. It is found that 

discrepancies in the representation of vertical mixing, which are typical for regions 

with complex terrain, can lead to strong biases in simulated CO2 concentrations. The 

study points out the importance of vertical profiling of CO2 (such as provided by 

aircraft campaigns) or meteorological fields (like wind profiler measurements) for 

assessing the impact of vertical mixing on tracer concentrations. 

 
5. Can we use these measurements in future inversion studies? 

 
Measurements from mountain sites provide larger scale representativeness compared 

to those made from towers located on flat terrain. Moreover, the longest greenhouse 

gas records are often from mountain sites, making them a valuable ingredient for 

assessing longer-term variations in carbon budgets. However, inversion studies often 

exclude the data from mountain or complex terrain sites, or give them less statistical 

weighting (larger uncertainty), or implement temporal data filtering of the 

measurements (e.g. selection of nighttime-only data at mountain sites) due to the 

models’ (both global and regional scale models) inability to represent complex terrain 

and to capture mesoscale flow patterns at mountain sites. Chapter 4 addresses this 
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issue by using models with high spatial resolution. The study successfully 

demonstrates that the high-resolution modeling framework can capture the synoptic, 

seasonal and diurnal variability of observed CO2 concentrations over a complex site 

such as OXK, which is a prerequisite for the inverse modeling systems to utilize 

measurements from these sites. This indicates that measurements from these sites can 

be included in future inversion studies by properly implementing high-resolution 

tools into the current global inverse models. 

 
Outlook (3, 4 & 5): 
 
The actual reduction in uncertainties of flux estimates when using high-resolution 

models (compared to lower-resolution models) needs to be further investigated. 

Future work will focus on inversions using high-resolution models nested in global 

models so that measurements from mountain stations can be utilized in inverse 

modeling frameworks to derive regional CO2 budgets at reduced uncertainty limits. 

The feasibility of using these high-resolution nests in global models has already been 

demonstrated by Rödenbeck et al. (2009).  

 
6. How consistent are different model components of the model-data fusion 

system? 
 
The consistency of different components of the model-data fusion system is important 

since the flux estimates can be biased if different realizations of turbulence, vertical 

mixing and numerical diffusion exist between models. Hence a consistency check has 

to be carried out as a first step towards applying STILT as an adjoint of WRF in the 

inverse modeling system. This is addressed in Chapter 5. The modeling system 

involving two tracer transport models based on different governing equations of 

motion − STILT (Lagrangian based) and WRF (Eulerian based) − are examined for 

their consistency in parameterizing transport and vertical mixing of atmospheric CO2 

concentrations.  The inter-model comparisons show similar performance in predicting 

CO2 concentration at and around OXK with high correlations. The factors 

contributing to the remaining discrepancies between the models are identified. The 

inter-model differences, albeit small in most of the cases, are caused mainly by the 

discrepancy in the representation of the interaction between turbulent mixing and 

advection through wind shear between STILT and WRF. Based on observations and 

inter-model comparisons, it is concluded that a refinement of the parameterization of 
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turbulent velocity variance and Lagrangian time-scale in STILT is required to achieve 

a better match between the Eulerian and the Lagrangian transport at high spatial 

resolution.  This is especially true for extreme cases when signatures from strong 

sources such as fossil fuel emissions are transported over large distances and 

dominate over those from local sources (e.g. biospheric fluxes). Nevertheless, the 

inter-model differences in simulated CO2 time series at OXK are about a factor of 

two smaller than the model-data mismatch and about a factor of  three smaller than 

the mismatch between the current global model simulations and the data, which 

justifies using STILT as an adjoint model of WRF. It is also concluded that the 

existing inter-model difference in local mixing heights ( iz ) has only a negligible 

impact on simulated CO2 concentrations between models due to a spatially variable 

boundary layer top in the simulation, which does not act as a barrier to the vertical 

mixing. 

 
Outlook (6):  
 
Future steps involve further refinement of the turbulent velocity variance and 

Lagrangian time-scale parameterizations in STILT, which were originally developed 

for coarse resolution meteorological fields (at spatial resolutions of at most 20 km). 

This is required to exclude any possible discrepancies between these models at high-

resolution (e.g. using meteorological fields at a spatial resolution of 2 km) which will 

cause uncertainties on derived regional flux estimates. The parameterization of iz  in 

the transport models needs to be further improved in order to avoid unrealistic spatial 

variations in the boundary layer top as seen in the simulations.    

 
7. Do we have an inversion technique which has the potential to provide 

regional flux estimates at reduced uncertainty limits? 
 
Chapter 6 presents a mesoscale inversion framework using high-frequency 

observational constraints from OXK as well as high-resolution transport and prior 

fluxes provided by the WRF/STILT-VPRM modeling framework, in order to estimate 

regional carbon fluxes with reduced uncertainties. The approach, utilizing the 

information provided by eddy covariance flux measurements and remote sensing data 

streams, has the potential to provide flux estimates that are consistent with both 

mixing ratio and eddy flux measurements. Using the VPRM biospheric model at high 

and temporal resolution reduces the uncertainties associated with representation of 
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prior fluxes in the inverse modeling system. A large reduction in uncertainly of fluxes 

is found for the cropland vegetation type, followed by evergreen and mixed forests. 

The seasonal dependence of optimized (via inversion) VPRM scalars suggests the 

importance of using long-term measurements in the inversion framework and 

covering all seasons. The direct comparison between observed (which are not used in 

the optimization) and modeled fluxes show that the simulated fluxes − both prior 

(before inversion) and posterior (after inversion) − are able to capture the diurnal 

patterns of observed fluxes. For all these flux measurement stations, the prior and 

posterior fluxes display similar agreement with only small changes. We emphasize 

that with the availability of more observational constraints together with reasonable 

prior information and adequate transport, the current regional CO2 budget estimates 

can be improved via mesoscale inverse modeling.  

 
Outlook (7):  
 
The study will be extended by using additional observational constraints from 

existing tower and airborne measurements at other locations. The information gain 

when using high-resolution models (compared to lower-resolution models) in the 

inverse framework will be further assessed. This is in line with the future work 

proposed in Outlook (3, 4 & 5). 
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A  APPENDIX 

A1  List of acronyms 

 
CCDAS  — Carbon Cycle Data Assimilation System  

CarbonSat  — Carbon monitoring SATellite. 

CASA   — Carnegie-Ames-Stanford Approach 

CHIOTTO  —  Continuous High-precisIOn Tall Tower Observations of       

                                    greenhouse gases 

COBRA  — CO2 Budget and Rectification Airborne study  

DIC   — Dissolved Inorganic Carbon  

ENVISAT  — ENVIronmental SATellite 

ESA   — European Space Agency  

GCM   — General Circulation Model  

LPDM  — Lagrangian Particle Dispersion Model  

LUE   — Light Use Efficiency  

MRT  — MODIS Reprojection Tool  

PBL   — Planetary Boundary Layer  

REMO  — REgional MOdel 

SCIAMACHY — SCanning Imaging Absorption spectroMeter for Atmospheric          

                                   CHartographY  

CERES  — CarboEurope Regional Experiment Strategy 

ECMWF  — European Centre for Medium-range Weather Forecast 

FT   — Free Troposphere  

HDF  — Hierarchical Data Format  

HYSPLIT  — HYbrid Single-Particle Lagrangian Integrated Trajectory  

IER   — Institut für Energiewirtschaft und Rationelle  

            energieanwendung  

JAXA   — Japan Aerospace eXploration Agency   

GOSAT  — Greenhouse gases Observing SATellite 

MODIS  — MODerate resolution Imaging Spectroradiometer  

NASA   — National Aeronautics and Space Administration  

OCO   — Orbiting Carbon Observatory  

STILT   — Stochastic Time-Inverted Lagrangian Transport model 
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USGS   — U.S. Geological Survey  

VPRM  — Vegetation Photosynthesis and Respiration Model  

WRF   — Weather Research and Forecasting model  

WPS   — WRF Preprocessing System  

YSU   — YonSei University 

TM3  — Transport Model-3 

TransCom  — atmospheric tracer Transport model interComparison project 

WMO   — World Meteorological Organization 

WRF-Chem  — WRF-Chemistry  

 

A2  List of physical constants 

 
π =  3.1415926  (pi) 

k  =  0.4  (von Kármán's constant) 

re  =  6.370 × 106 m  (Radius of earth) 

g  =  9.81 m s-2  (Acceleration due to gravity) 

eΩ =  7.2921 × 10-5 s-1  (Angular rotation rate of the earth) 
Bσ =  5.67051 × 10-8  W m-2 K-4  (Stefan-Boltzmann constant) 

dR =  287  J kg-1 K-1  (Gas constant for dry air) 

vR =  461.6  J kg-1 K-1   (Gas constant for water vapor) 
pc =  7 × Rd/2  J kg-1 K-1  (Specific heat of dry air at constant pressure) 

vc = pc – Rd  J kg-1 K-1   (Specific heat of dry air at volume) 
pvc =  4 × Rv  J kg-1 K-1  (Specific heat of water vapor at constant pressure) 

vvc = pvc – Rv  J kg-1 K-1  (Specific heat of water vapor at constant volume) 
liqc = 4190  J kg-1 K-1  (Specific heat capacity of water) 
icec = 2106  J kg-1 K-1  (Specific heat capacity of ice) 

vL = 2.5 × 106  J kg-1  (Latent heat of vaporization) 

sL = 2.85 × 106  J kg-1  (Latent heat of sublimation) 

fL = 3.50 × 105  J kg-1  (Latent heat of fusion) 
wρ = 1.0 × 103  kg m-3  (Density of liquid water) 
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