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Understanding the continuous exchange of elements among the land, the oceans,
and the atmosphere is one of the big research questions in Earth system science.
Comprehending how these so called biogeochemical cycles function and inter-
act—including their responses to changes in climate and other perturbations—is
crucial for a sustainable future of mankind on planet Earth. To arrive at this under-
standing biotic, biochemical, geochemical and physical aspects have to be taken
into account.

Studies of the carbon cycle are driven by this basic human desire to unravel how
our environment functions and to understand the role of ecosystems in and human
influence on the Earth System. Besides pure curiosity, research in this field is
also stimulated by the realisation that anthropogenic emissions of carbon dioxide
can lead to significant and lasting changes in the climate system (Solomon et al.,
2007).



2 Background and motivation

In the past decades, Earth system science has significantly advanced due to in-
creased availability of observations on various spatial and temporal scales. For
example, the assessment of spatio-temporal ecosystem-atmosphere interaction
has greatly benefited from improved availability of various kinds of Earth observa-
tion data from space. The establishment and expansion of measurement networks
for atmospheric concentrations and ecosystem-atmosphere fluxes of greenhouse
gases has also been crucial for the advancement of scientific understanding.

1.1 Carbon assimilation in terrestrial ecosystems

The overarching topic of this thesis is the quantification of carbon uptake by terres-
trial ecosystems. Before going into the details, let me place carbon uptake in the
conceptual framework of the terrestrial carbon cycle (c.f. Fig. 1.1).
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change (primarily deforestation) (Table 7.1). Almost 45% of 
combined anthropogenic CO2 emissions (fossil fuel plus land 
use) have remained in the atmosphere. Oceans are estimated to 
have taken up approximately 30% (about 118 ± 19 GtC: Sabine 
et al., 2004a; Figure 7.3), an amount that can be accounted for 
by increased atmospheric concentration of CO2 without any 
change in ocean circulation or biology. Terrestrial ecosystems 
have taken up the rest through growth of replacement vegetation 
on cleared land, land management practices and the fertilizing 
effects of elevated CO2

Because CO2
in the ocean, the biological pump does not take up and store 
anthropogenic carbon directly. Rather, marine biological cycling 
of carbon may undergo changes due to high CO2 concentrations, 
via feedbacks in response to a changing climate. The speed with 
which anthropogenic CO2 is taken up effectively by the ocean, 
however, depends on how quickly surface waters are transported 
and mixed into the intermediate and deep layers of the ocean. A 
considerable amount of anthropogenic CO2 can be buffered or 
neutralized by dissolution of CaCO3 from surface sediments in 
the deep sea, but this process requires many thousands of years. 

The increase in the atmospheric CO2 concentration relative 
to the emissions from fossil fuels and cement production only 

2 Land emissions, 

complication that much land emission from logging and 
clearing of forests may be compensated a few years later by 

uptake associated with regrowth. The ‘airborne fraction of total 
2 increase as a 

fraction of total anthropogenic CO2 emissions, including the net 

mainly due to the effect of interannual variability in land uptake 
(see Section 7.3.2). 

7.3.1.3 New Developments in Knowledge of the Carbon 
Cycle Since the Third Assessment Report

Sections 7.3.2 to 7.3.5 describe where knowledge and 

Assessment Report (TAR). In particular, the budget of 
anthropogenic CO2
can be calculated with improved accuracy. In the ocean, newly 
available high-quality data on the ocean carbon system have 
been used to construct robust estimates of the cumulative 
ocean burden of anthropogenic carbon (Sabine et al., 2004a) 
and associated changes in the carbonate system (Feely et al., 
2004). The pH in the surface ocean is decreasing, indicating the 
need to understand both its interaction with a changing climate 
and the potential impact on organisms in the ocean (e.g., Orr 
et al., 2005; Royal Society, 2005). On land, there is a better 
understanding of the contribution to the buildup of CO2 in the 
atmosphere since 1750 associated with land use and of how 
the land surface and the terrestrial biosphere interact with a 
changing climate. Globally, inverse techniques used to infer the 

Figure 7.3. The global carbon cycle for the 1990s, showing the main annual fluxes in GtC yr–1: pre-industrial ‘natural’ fluxes in black and ‘anthropogenic’ fluxes in red (modi-
fied from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of –39 GtC is inferred from cumulative fossil fuel emissions 
minus atmospheric increase minus ocean storage. The loss of –140 GtC from the ‘vegetation, soil and detritus’ compartment represents the cumulative emissions from land use 
change (Houghton, 2003), and requires a terrestrial biosphere sink of 101 GtC (in Sabine et al., given only as ranges of –140 to –80 GtC and 61 to 141 GtC, respectively; other 
uncertainties given in their Table 1). Net anthropogenic exchanges with the atmosphere are from Column 5 ‘AR4’ in Table 7.1. Gross fluxes generally have uncertainties of more 
than ±20% but fractional amounts have been retained to achieve overall balance when including estimates in fractions of GtC yr–1 for riverine transport, weathering, deep ocean 
burial, etc. ‘GPP’ is annual gross (terrestrial) primary production. Atmospheric carbon content and all cumulative fluxes since 1750 are as of end 1994.

2 This definition follows the usage of C. Keeling, distinct from that of Oeschger et al. (1980).

Fig. 1.1: The global carbon cycle for the 1990s, showing the main annual fluxes in GtC
yr—1: pre-industrial ‘natural’ fluxes in black and ‘anthropogenic’ fluxes in red. Denman
et al. (Reprinted from 2007, (Fig. 7.3)).

As outlined by Canadell et al. (2000), the metabolism of the terrestrial biosphere is
highly complex and subject to variability at all temporal scales (seasonal to decadal
and beyond). The dominant pathway by which carbon enters an ecosystem—and
hence the principal control of carbon input—is photosynthesis, a process that con-
verts carbon dioxide into organic compounds using the energy of light. The total
carbon uptake by plants per unit ground and and time is termed GPP.

About half of it is respired by the plants themselves (Schulze et al., 2005), a compo-
nent flux called autotrophic respiration (Ra). The imbalance of assimilation and res-
piration by living parts of primary producers is called net primary productivity (NPP)
(Chapin III et al., 2009). If NPP is positive, carbon is allocated to an increase in
structural biomass or to the plant’s pool of reserves.
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In natural ecosystems, eventually all parts of the vegetation are decomposed and
mineralised, so carbon dioxide (CO2) returns to the atmosphere via heterotrophic
respiration (Rh). The difference between GPP and total ecosystem respiration
(Reco) is termed net ecosystem productivity (NEP) or—when viewed as input into
the atmosphere—as net ecosystem exchange (NEE = -NEP). The relationships
between the components of ecosystem fluxes can be summarised like this (Luys-
saert et al., 2009):

Reco = Ra +Rh (1.1)

NPP = GPP −Ra (1.2)

NEP = NPP −Rh (1.3)

= GPP −Reco (1.4)

For an ultimate quantification of an ecosystem’s carbon budget—and hence the
ecosystem’s ability to partially offset anthropogenic CO2 emissions—disturbances
such as fire, harvest, soil degradation need to be considered, as well as lateral
fluxes of carbon, besides fluxes of volatile organic compounds (VOCs) and
methane (Chapin et al., 2006).

The terrestrial carbon cycle is tightly coupled to the cycling of other elements and
substances (Lohse et al., 2009), first of all to the hydrologic cycle (Nobel, 2005). A
fundamental trade-off for plants is the evaporative loss of water during CO2 acqui-
sition for photosynthesis. Many approaches to model GPP thus take into account
the limits set by plant water availability.

This study focusses on GPP because it is the largest global CO2-flux and driver of
several ecosystem functions (Beer et al., 2010).

1.2 What determines gross primary productivity?

A major determinant of canopy photosynthesis—and thus GPP—is the amount of
light intercepted by the leaves, i.e. the available energy (Schulze et al., 2005).
Apart from geographic location and season, light interception is influenced by the
angular relationship between leaves and Earth—sun geometry as well as by the
way plants modify their own light climate (Baldocchi and Amthor, 2001).

Further influences on canopy photosynthesis include temperature, wind speed, hu-
midity, availability of soil moisture and nutrients, especially nitrogen, as an essen-
tial component of photosynthetic enzymes (Baldocchi and Amthor, 2001). Along
with the environmental constraints listed above, the specific photosynthetic path-
way of the plant and the life history of the leaves are also important (Schulze et al.,
2005). Furthermore, stress caused by salt, heavy metals, oxygen deficiency or
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herbivory result in reduced photosynthetic capacity. Many of the above factors in-
fluence photosynthetic capacity twofold: by affecting the canopy’s ability to absorb
photochemically active radiation (PAR), and by directly or indirectly changing the
conductivity of the stomates—and thus regulating the influx of CO2 and the efflux
of water vapour, i.e. transpiration.

1.2.1 Mechanistic basis of carbon input into ecosystems

Photosynthesis consists of two types of reactions: light harvesting reactions and
carbon fixing reactions. In most plants they occur at the same time within chloro-
plasts, i.e. organelles within mesophylic cells of green leaves (Chapin et al., 2002).

Upon entering the leaf, visible light can be absorbed by two types of photosyn-
thetic pigments: chlorophylls (a and b) and several carotenoid pigments (e.g. xan-
thophylls, carotenes). Carotenoids pass on the light energy they absorb to the
chlorophylls, until it reaches a reaction center (Robinson, 2001). This absorbed
radiation is transformed into chemical energy in the compounds ATP and NADPH.
The carbon fixing reactions of the Calvin cycle then shift the energy contained
in the temporary products ATP and NADPH into relatively stable sugars that can
be stored, transported and metabolized. The first and rate-limiting step of these
reactions is the attachment CO2 to preexisting carbon skeletons by the enzyme
ribulose-bisphosphate carboxylase-oxygenase (Rubisco), a protein that accounts
for 25% of leaf nitrogen. The availability of CO2 and ATP and NADPH also con-
strains the carbon fixing reactions.

When the oxygen concentration is high relative to CO2 concentration in the chloro-
plasts of C3-plants Rubisco adds oxygen to Ribulose-1,5-bisphosphate (RuBP),
a 5-carbon compound in the Calvin cycle, instead of CO2. This initiates the con-
version of RuBP to CO2, a process called photorespiration that results in a net
carbon loss of 20-40 %. The reason for this ’waste’ is not clear, but it could be a
mechanism of photoprotection (Chapin et al., 2002).

Due to a sudden increase in irradiance or a decrease in photosynthesis at con-
stant irradiance (for example during drought, chilling or other stress factors) plants
absorb energy beyond their current photosynthetic capacity. This excess en-
ergy can be transferred to the omnipresent oxygen, thereby creating reactive oxy-
gen species that can damage cell components including photosynthetic pigments
(Demmig-Adams and Adams, 2006).

Photorespiration provides a supply of reactants (ADP and NADP) to the light re-
action under circumstances in which inadequate supply of CO2 limits the rate at
which these reactants can be regenerated by carbon fixation reactions.

Plants have other lines of defense against excess radiation (Robinson, 2001).
In continuous high-light environments, plants protect themselves by reducing the
amount of energy that gets absorbed. This can be achieved by reducing the total
leaf surface area, by vertical orientation of the leaves and by increasing reflectance
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for example by having waxes or hair on the surface. An internal protective mech-
anism is the dissipation of excess energy as heat. This process involves the xan-
thophyll cycle pigments violaxanthin, antheraxanthin and zeaxanthin, which are all
carotenoids. Under excess light conditions most of the xanthophyll pigments are
de-epoxized into zeaxanthin (Demmig et al., 1987; Demmig-Adams, 1990). This
reaction is favored by the low pH values and the presence of ascorbate, which
can be expected under excess radiation (Robinson, 2001). It has been observed
that increased levels of zeaxanthin go along with increased heat dissipation, al-
though the exact mechanism is still unknown. The de-epoxidation of violaxanthin
and antheraxanthin is reversed under low-light conditions.

1.2.2 Focus: water limitation

1.2.2.1 The importance of water stress

Among the biotic and abiotic constraints of primary productivity listed above, water
availability is especially important on a global scale. Zhao and Running (2010)
found large-scale periodic regional droughts and a general drying trend over the
southern hemisphere to be the cause of a reduction of global terrestrial NPP over
the past 10 years.

From the simple diagnostic model Biome-BGC Nemani et al. (2003) estimated that
water limitation is the most important constraint for vegetation growth on 40% of
Earth’s vegetated surface, while temperature and radiation limit growth over 33%
and 27% of the Earth’s vegetated surface. Beer et al. (2010) corroborate these
results. Their study, too, indicates that water availability is the dominating con-
straint on primary production in over 40% of the vegetated land and in up to 70%
of savannas, shrublands, grasslands, and agricultural areas. The findings of Beer
et al. (2010) imply that the productivity of these ecosystems is highly susceptible
to projected changes of precipitation over the 21st century, whereas tropical and
boreal forests seem more robust.

It is likely that large scale droughts have reduced regional and global primary pro-
ductivity already (Zhao and Running, 2010). Apart from affecting NPP directly,
heat and drought can also cause ecosystem disturbances that result in a release
of carbon to the atmosphere:

• Since climate regulates the amount of dry fuel available for ignition, it has a
significant influence on the spatial and temporal distribution of fire activity. A
study by van der Werf et al. (2008) found that fire activity in arid ecosystems
is constrained by the availability of fuel, which in turn is driven by the amount
of precipitation in the preceding wet season. In wet ecosystems fire occur-
rence seems to depend on the extend of the dry season that determines
the dryness of the fuel. Increased frequencies of large fires will affect for-
est composition and diminish tree densities and thus influence carbon pools
(Westerling et al., 2006).
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• Drought can also lead to higher tree mortality, caused either by carbon star-
vation due to stomatal closure, by cavitation, by limitations of the cellular
metabolism, by a higher susceptibility to pathogens or by a combination of
the above Allen et al. (2010).

1.2.2.2 Global change—increased risk of drought

Global patterns of air temperature and precipitation are changing. The increase
in global temperatures resulting from increasing atmospheric CO2 concentrations
leads to more water vapor in the atmosphere, so changes in precipitation patterns
can be expected (Solomon et al., 2009). The poleward expansion of the Hadley
cells in a warmer climate will lead to a further drying of the already dry subtropics.
According to the 4th Assessment report of the IPCC (Christensen et al., 2007),
a substantial part of the world will be affected by a decrease in precipitation. An
analysis with 22 Atmosphere–Ocean General Circulation Models (AOGCM)s by
(Solomon et al., 2009) identified the following areas that are expected to undergo
reductions in precipitation in the dry season (see also Fig. 1.2): Mexico and South-
Western United States, North Africa and Southern Europe, South Africa, Eastern
South America, West Australia, and Southeast Asia The Mediterranean region,
Central America, and some areas in southern South America, South Africa and
South-West Australia are also likely to experience precipitation reductions in the
wet season and in the annual mean Solomon et al. (2009).

1.3 Measuring productivity

1.3.1 Direct measurement

There are significant uncertainties related to measuring primary productivity di-
rectly, especially below ground (Gower et al., 1999). The largest part of NPP is
allocated to biomass of different plant tissues such as stem and branches, leaves,
coarse and fine roots (Luyssaert et al., 2009). To quantify NPP, biomass changes
of all plant tissues need to be known as well as the amount of biomass lost to
herbivory (Gower et al., 1999). To complete the balance, organic material both lost
and produced between samplings such as root exudates and volatile organic com-
pounds also need to be taken into account (Clark et al., 2001). According to Gower
et al. (1999), biomass increments can be determined in two ways. The first option
is harvesting. This approach is most suitable for ecosystems where the growth is
bigger than the local spatial variability of biomass, e.g. crops, herbaceous ecosys-
tems and tundra. The alternative is to use allometric relationships on permanent
plots. This method involves measuring radial increments of the stems in perma-
nent plots and relating these increments to the growth of all tissues by statistical
relationships. Measuring below ground productivity is costly, laborious and the ac-
curacy is disputed. One problem is due to the difficulties in determining the amount
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bowl’’ was associated with averaged rainfall decreases of !10%
over !10–20 years, similar to major droughts in Europe and
western Australia in the 1940s and 1950s (22, 32). The spatial
changes in precipitation as shown in Fig. 3 imply greater
challenges in the distribution of food and water supplies than
those with which the world has had difficulty coping in the past.
Such changes occurring not just for a few decades but over
centuries are expected to have a range of impacts that differ by
region. These include, e.g., human water supplies (25), effects on
dry-season wheat and maize agriculture in certain regions of
rain-fed farming such as Africa (33, 34), increased fire fre-
quency, ecosystem change, and desertification (24, 35–38).

Fig. 4 Upper relates the expected irreversible changes in
regional dry-season precipitation shown in Fig. 3 to best esti-
mates of the corresponding peak and long-term CO2 concen-
trations. We use 3 °C as the best estimate of climate sensitivity
across the suite of AOGCMs for a doubling of carbon dioxide
from preindustrial values (5) along with the regional drying
values depicted in Fig. 3 and assuming that !40% of the carbon
dioxide peak concentration is retained after 1000 years. Fig. 4
shows that if carbon dioxide were to peak at levels of !450 ppmv,
irreversible decreases of !8–10% in dry-season precipitation
would be expected on average over each of the indicated large
regions of southern Europe, western Australia, and northern
Africa, while a carbon dioxide peak value near 600 ppmv would
be expected to lead to sustained rainfall decreases of !13–16%
in the dry seasons in these areas; smaller but statistically
significant irreversible changes would also be expected for

southwestern North America, eastern South America, and
Southern Africa.

Irreversible Climate Change: Sea Level Rise. Anthropogenic carbon
dioxide will cause irrevocable sea level rise. There are 2 relatively
well-understood processes that contribute to this and a third that
may be much more important but is also very uncertain. Warm-
ing causes the ocean to expand and sea levels to rise as shown in
Fig. 1; this has been the dominant source of sea level rise in the
past decade at least (39). Loss of land ice also makes important
contributions to sea level rise as the world warms. Mountain
glaciers in many locations are observed to be retreating due to
warming, and this contribution to sea level rise is also relatively
well understood. Warming may also lead to large losses of the
Greenland and/or Antarctic ice sheets. Additional rapid ice
losses from particular parts of the ice sheets of Greenland and
Antarctica have recently been observed (40–42). One recent study
uses current ice discharge data to suggest ice sheet contributions of
up to 1–2 m to sea level rise by 2100 (42), but other studies suggest
that changes in winds rather than warming may account for
currently observed rapid ice sheet flow (43), rendering quantitative
extrapolation into the future uncertain. In addition to rapid ice flow,
slow ice sheet mass balance processes are another mechanism for
potential large sea level rise. Paleoclimatic data demonstrate large
contributions of ice sheet loss to sea level rise (1, 4) but provide
limited constraints on the rate of such processes. Some recent
studies suggest that ice sheet surface mass balance loss for peak CO2
concentrations of 400–800 ppmv may be even slower than the
removal of manmade carbon dioxide following cessation of emis-

Fig. 3. Expected decadally averaged changes in the global distribution of precipitation per degree of warming (percentage of change in precipitation per
degree of warming, relative to 1900–1950 as the baseline period) in the dry season at each grid point, based upon a suite of 22 AOGCMs for a midrange future
scenario (A1B, see ref. 5). White is used where fewer than 16 of 22 models agree on the sign of the change. Data are monthly averaged over several broad regions
in Inset plots. Red lines show the best estimate (median) of the changes in these regions, while the red shading indicates the "1-! likely range (i.e., 2 of 3 chances)
across the models.
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Fig. 1.2: Expected decadally averaged changes in the global distribution of precipitation
per degree of warming (percentage of change in precipitation per degree of warming,
relative to 1900—1950 as the baseline period) in the dry season at each grid point, based
upon a suite of 22 AOGCMs for a midrange future scenario (A1B, see Meehl et al.
(2007)). White is used where fewer than 16 of 22 models agree on the sign of the
change. Data are monthly averaged over several broad regions in Inset plots. Red lines
show the best estimate (median) of the changes in these regions, while the red shading
indicates the ±1-Σ likely range (i.e., 2 of 3 chances) across the models. (Figure and
caption are a reproduction of Fig. 3 in Solomon et al., 2009).

and turn-over time of fine roots and mycorrhiza (Trumbore and Gaudinski, 2003).
This fraction constitutes a relatively small part of below ground biomass but, due
to a high turn-over, might contribute much to below-ground primary productivity.
For an overview of measurement methods, their advantages and drawbacks see
(Gower et al., 1999; Majdi et al., 2005; Gaudinski et al., 2010).

1.3.2 Measurement with eddy covariance

Measuring NEP with eddy covariance technique has several advantages over other
methods (Baldocchi, 2003). The method enables us to measure gas and energy
exchange at the right scale, i.e. at ecosystem level, since the longitudinal exten-
sion of the measurement footprint ranges from hundreds of meters to kilometers
(Schmid, 1994). The eddy covariance technique enables direct measurements of
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the net gas exchange over the canopy-atmosphere interface without disturbing the
ecosystem over a wide spectrum of time scales (from hours to years).

Fluxes of CO2, water vapour and other trace gasses as well as heat can be quan-
tified by determining the covariance between fluctuations in vertical velocity (ω)
and concentrations (or mixing ratios) of the gases of interest (Aubinet et al., 2000;
Baldocchi, 2008). Gas concentrations are measured with a fast response infrared
gas analyser at high frequency (10-20 Hz), synchronous to 3-dimensional mea-
surements of wind speed taken by a three-axis sonic anemometer (Aubinet et al.,
2000, 2003b; Papale et al., 2006)

The physical basis for the eddy covariance method is a three-dimensional mass
conservation equation. Baldocchi et al. (1988) state that

“ the time rate of change of the mean mixing ratio (concentration) of
a chemical constituent at a fixed point in space (I) is balanced by the
mean horizontal and vertical advection (II), by the mean horizontal and
vertical divergence or convergence of the turbulent flux (III), by molec-
ular diffusion (D), and by any source or sink (S) ”

δχ

δt
= − uδχ

δx
− ν δχ̄

δy
− ω̄ δχ

δz
− δu′x′

x
− δν ′y′

y
− δω′z′

z
+D + S (1.5)

(I) (· · · · · · · · · II · · · · · · · · · ) (· · · · · · · · · III · · · · · · · · · )

χ . . . mixing ratio of a chemical constituent
u, ν, ω . . . streamwise, lateral, and vertical wind velocity components, re-

spectively, that operate in the respective longitudinal (x), lateral
(y), and vertical (z) directions. The mean covariances between
wind velocity components and χ represent turbulent fluxes.

D . . . molecular diffusion
S . . . source/sink term

Overbars denote time averaging and primes (’) denote fluctua-
tions from the mean

Under ideal conditions (horizontally uniform and level surface, enough turbulence,
no significant changes in concentrations during measurement interval) equation
1.5 can be simplified, and the mean vertical turbulent flux under steady state con-
ditions is

F = −ρaω′χ′ (1.6)

where ρa is the density of dry air.

The foundations for this theoretical framework have already been laid in the late
19th century (Reynolds, 1985). However, it was only in the 1990s that commer-
cial anemometers, gas analysers and data storage systems became available to
measure continuously, with sufficient accuracy. The first yearlong study of CO2
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exchange was done by Wofsy et al. (1993). After this, regional networks (e.g. Car-
boEuroflux, AmeriFlux) were established quickly (Aubinet et al., 2000; Valentini
et al., 2000; Running, 1999) and collaborate since 1997 in the FLUXNET project.
At present, more than 500 sites with longterm measurements of CO2, water vapour
fluxes, and many ancillary meteorological, soil and plant variables are organised
in the global network FLUXNET (FLUXNET project, 2010).

The site data combined by FLUXNET are processed according to standard
methodologies including averaging to half-hourly values, filtering for insufficient
friction velocity (u*), partitioning of the net ecosystem exchange flux into produc-
tivity and respiration components as well as filling of gaps caused by interrupted
measurements or quality filtering. Section 2.1 explains these processing steps in
more detail.

1.4 Ecosystem light use efficiency — How is it con-
strained?

The influence of light levels on photosynthesis was not explicitly considered until
the 1950s, in forest ecosystems (Monsi and Saeki, 2005) as well as for crops
(De Wit, 1959). Since the studies by Monteith (1972); Monteith and Moss (1977)
the term LUE, also called radiation use efficiency (RUE) or conversion efficiency,
became a convenient way to summarize how efficiently ecosystems can use light
energy to produce photosynthates at any given time.

LUE is a quotient where the numerator is a measure of production and the de-
nominator quantifies irradiance (Schwalm et al., 2006). However, in the scientific
literature the same name is used to describe slightly different processes on dif-
ferent scales. A study by Grace et al. (2007) notes that some articles express
LUE as mols of CO2 per mols photons of absorbed light, while others express it
in units of energy (in Joules) captured in chemical bonds of photosynthates per
Joule of solar energy absorbed. Some authors deviate from the physical mean-
ing of ’efficiency’ as a unit-less ratio by relating accumulated biomass (which was
comparatively easy to measure in the past) to energy. There are also variations
in the meaning of the denominator: sometimes authors use energy absorbed by
the vegetation, others use incident energy. While some studies refer only to PAR,
others refer to the full solar spectrum.

Carbon and biomass have both been used to describe the carbon dynamics of
ecosystems because the carbon and energy content is relatively constant for or-
ganic matter (Chapin et al., 2002).

1.4.1 How is LUE determined (on a local scale)?

Since LUE is a derived quantity, it cannot be measured directly. It is either quan-
tified as the ratio of a measure of production and a measure of irradiance (see
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above) or by proxy (e.g. certain radiation measurements).

Historically, in crop science radiation use efficiency is a derived quantity based
on accumulated crop mass and absorbed radiation (Monteith, 1972; Monteith and
Moss, 1977; Sinclair and Muchow, 1999).

1.4.2 Constraints of ecosystem light use efficiency

There is considerable scatter in LUE within each vegetation type (Ruimy and
Saugier, 1994; Gower et al., 1999).

A comprehensive review by Garbulsky et al. (2010) lists two main influences on
spatial and longterm variability in LUE:

• Forest age and management practices on annual scale (Landsberg and War-
ing, 1997)

• Nutritional status such as nitrogen availability (Mäkelä et al., 2008; Ollinger
et al., 2008) on local scales, because of the scatter in the data on the rela-
tionship between maximum photosynthetic rate and and foliar nitrogen con-
centrations (Woodward et al., 1995)

Some studies (Turner, 2003; Still et al., 2004) report little evidence for relation-
ships between climatic or biogeochemical controls and spatial variability of LUE.
However, in their meta-analysis Garbulsky et al. (2010) found that the spatial and
long-term variability of LUE is controlled firstly by precipitation, and secondly by
the vegetation type. Annual and maximum LUE has been primarily related to mean
annual precipitation.

The meta-analyis by Garbulsky et al. (2010) concluded that intra-annual variation
of LUE is mainly linked to the energy balance and water availability along the cli-
matic gradient. They also showed that intra-annual variation of LUE is only weakly
influenced by VPD and tem-perature, contrary to what is frequently assumed. For
annual crops a positive relationship between LUE and temperature (Andrade et al.,
1993) and a negative relationship to VPD (Kiniry et al., 1998) has been found. The
LUE of Great Plain grasslands seems to depend on potential evapotranspiration
and precipitation (Polley et al., 2010).LUE of forests has been shown to be posi-
tively related to temperature (Landsberg and Waring, 1997). For other vegetation
types (e.g. shrublands) only few studies exist (Sims et al., 2005; Turner et al.,
2005) and the biophysical controls are not yet well understood.

Apart from LUE, (annual) GPP is also controlled by the leaf area, which is closely
related to faPAR.
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1.5 Estimating primary productivity on regional and
global scales

Terrestrial GPP deserves special attention because it is the largest global carbon
flux (Denman et al., 2007) and drives other ecosystem functions such as respira-
tion and vegetation growth (Ciais et al., 2005; Reichstein et al., 2007).

On the leaf and canopy scale, photosynthesis is quite well understood and can be
easily measured (e.g. Baldocchi and Amthor, 2001), see also section 1.3. On the
regional to global scale, however, there is no way to measure ecosystem gas ex-
change directly. To estimate primary productivity on this scale, one of the following
approaches must be taken (Beer et al., 2010):

(1) Use of local information to build and calibrate process-based, prognostic mod-
els, which can then be applied at global scale,

(2) Data-oriented, so called diagnostic modeling establishes general relationships
between GPP data and sets of descriptive variables at site level. These rela-
tionships are then applied to global spatial fields of the explanatory variables
("upscaling"),

(3) Combination of point measurements of atmospheric CO2 concentrations (flask
samples, or continuous observations on tall towers, or column averaged CO2

concentrations derived from satellite data (Heimann, 2009) or ground based
solar absorption measurements (Macatangay et al., 2008)) with atmospheric
transport models (Rödenbeck et al., 2003; Lauvaux et al., 2009) ("top down"
approach),

(4) Estimation of NPP from biomass inventories (Poorter et al., 1990; Roy and
Saugier, 2001).

These techniques are complementary to each other (Canadell et al., 2000, 2004).
Approach (4) is the most uncertain way to estimate primary productivity (DeLucia
et al., 2007), and mainly mentioned for historic reasons and sake of complete-
ness. Process models are useful tools to check our mechanistic understanding of
ecosystems. Their main purpose is the extrapolation into the future. Data oriented
models are a useful tools to constrain and test these process models (Beer et al.,
2010), as they rely on very few theoretical assumptions. Diagnostic models do not
allow for extrapolations into the future. Their strength is the assessment of the sta-
tus quo and of historic trajectories, depending on the availability of sufficient input
and training data.

1.5.1 Prognostic modelling of gross primary productivity

Prognostic models of primary productivity or other components of the carbon bal-
ance are not a subject of this thesis.
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1.5.2 Diagnostic modelling of gross primary productivity—Overview

Diagnostic models of GPP relate site level measurements of GPP to a set of ex-
planatory variables, e.g. meteorology, vegetation type, remotely sensed vegetation
indices (Beer et al., 2010) at daily, monthly or annual time scales. Examples are
given in Table 1.1.

Tab. 1.1: Categories of diagnostic GPP (after Beer et al., 2010)

Type of model short description References
LUE approach GPP is the product of LUE and aPAR; LUE is a

function of a maximum LUE and certain
environmental constraints

Monteith (1972);
Running et al.
(2000)

water use
efficiency (WUE)
approach

GPP of whole river catchments, combines
recently derived global WUE fields with
long-term averaged evapotranspiration at the
watershed scale

Beer et al. (2007,
2009)

Koeppen-Geiger
cross biome
(KGB) approach

Look-up table of mean GPP per climate class
and biome type Beer et al. (2010)

MIAMI model relates primary productivity to mean annual
temperature and precipitation Lieth and

Whittaker (1975);
Beer et al. (2010)

machine learning techniques

artificial neural
networks (ANN)

prediction of GPP by an empirical model in
which the weights associated to the nodes of
the model are determined in a training process
(by back-propagation of the error in the output)

Papale and
Valentini (2003)

model tree
ensemble (MTE)

prediction of GPP by a set of multiple linear
regressions from explanatory variables (faPAR,
faPAR× potential radiation, precipitation,
temperature)

Jung et al. (2009)

Developing and using different flavors of models ultimately leads to more robust
estimates of primary productivity (Beer et al., 2010). Each type of diagnostic mod-
eling is associated with uncertainty—propagated from the input data but also due
to the representativity of the model structure. Comparing and combining results
from diverse approaches helps to understand how big these uncertainties are.

Terrestrial models of photosynthetic uptake that use LUE as an input (Haxeltine
and Prentice, 1996; Ruimy et al., 1999) deserve special attention because of sev-
eral promising options to improve them by deriving LUE directly from remotely
sensed data.

1.5.3 LUE models of primary productivity—focus on MOD17

A number of GPP models set a maximum (or potential) LUE as a constant and
downregulate it by minimum temperature and one or several estimators of water
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stress (Potter et al., 1999; Running et al., 2004; Yuan et al., 2007; Mäkelä et al.,
2008). The way in which the maximum LUE and the coefficients accounting for
stress effects are set differs between models. The maximum LUE is often set
as a constant across sites and biomes or it is defined for each vegetation type.
Assuming maximum LUE to be constant for different locations within one biome
is an oversimplification possibly causing the poor performance of global models of
GPP (Heinsch et al., 2006).

A frequently chosen indicator of water stress is VPD (Granger and Gray, 1989;
Running and Nemani, 1988), also in LUE-based models of photosynthetic uptake.
This practice is supported by several studies that suggest atmospheric conditions
reflect surface parameters (Bouchet, 1963; Morton, 1983). In certain places (most
of China, conterminous U.S.) VPD has been shown to capture the interannual
variability of water stress, though it may fail to capture the full seasonal water
stress in dry regions experiencing strong summer monsoons (Mu et al., 2007a,b).

This study uses the MOD17 model of primary productivity as an example because
it is used operationally to produce global datasets of GPP and NPP, products
that are freely and easily accessible in near-real time since March 2000 (http:
//modis.gsfc.nasa.gov/data) and are thus rather influential.

1.5.3.1 Algorithm of the MOD17 model of primary productivity

The MOD17 model of primary productivity is a classic example of a LUE model (c.f.
section 1.5.3). A maximum LUE is reduced by simple ramp functions of daily Tmin
and VPD (see Fig. 1.3). The resulting actual LUE is multiplied by the available
energy (Heinsch et al., 2003):

LUE = LUEmax ∗ f(Tmin) ∗ f(V PD) (1.7)

GPP = LUE ∗ aPAR (1.8)

= LUE ∗ faPAR ∗ PAR (1.9)

A minimum temperature scalar (Tmin) reduces the conversion efficiency when cold
temperatures limit plant function (Heinsch et al., 2003, 2006). Another scalar re-
duces LUE when VPD increases beyond a threshold (VPDmin) that is considered
high enough to limit photosynthesis. The effect of soil water availability on pho-
tosynthetic assimilation is not included in the MOD17 algorithm (Heinsch et al.,
2006). To partially account for this issue, sensitivity to VPD is increased in the
model as a surrogate for drought effects (McCallum et al., 2009).

Both scalars range from 1 (implicating no inhibition of photosynthesis by environ-
mental conditions) to 0 (total inhibition). The five parameters of the model (LUEmax,
Tminmin, Tminmax, VPDmin, VPDmax) have been defined for 11 biome types and
are stored in a biome property look-up table (BPLUT) (c.f. Table A.1). The algo-

http://modis.gsfc.nasa.gov/data
http://modis.gsfc.nasa.gov/data
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Fig. 1.3: The MOD17 Tmin and VPD attenuation scalars are simple linear ramp functions
of daily Tmin and VPD. Adapted from Heinsch et al. (2003).

rithm used to map these 11 biome types employs the University of Maryland (UMD)
classification scheme (Hansen et al., 2000; Heinsch et al., 2003). The BPLUT has
originally been parameterised using a global simulation of the general ecosystem
model BIOME-BGC (Running et al., 2000; Zhao et al., 2005) and was later on ad-
justed using updated meteorological and faPAR data compared to data from 12
North American FLUXNET sites (Zhao et al., 2005; Heinsch et al., 2006).

A second product of the MOD17 algorithm is NPP. Daily maintenance and growth
respiration are estimated using biome-specific allometric relationships based on
leaf area index (LAI) and faPAR and subsequently subtracted from GPP (Heinsch
et al., 2003). However, the final NPP-product is only available at annual timescale
(Running et al., 2000).

In the following, only GPP is considered because it is available at a daily resolution
from the NASA data portal and—given the availability of suitable input data—it can
be calculated at even higher temporal resolution.

1.5.3.2 Operational input into the MOD17 GPP model

There are three sources of input into the MOD17 model: land cover and faPAR
data (both are derived at 1 km spatial resolution from the MODIS sensors), and
meteorological data.

Biome type information originates from two MODIS land cover classification
schemes (Heinsch et al., 2006). Besides the UMD land cover classification (i.e.
land cover classification type 2 of the MOD12Q1 product) used by the core MOD17
algorithm (Hansen et al., 2000), the MOD15 algorithm for deriving LAI and faPAR
relies on the land cover classification type 3 (LAI/fPAR biome scheme) with 6 biome
types (Myneni et al., 2002).

Apart from the land cover classification that defines the basic vegetation archi-
tecture and characteristics, MOD15 algorithm inputs include atmospherically cor-
rected bidirectional reflectance values in a red and and a near-infrared spectral
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band, as well as the sun and viewing geometry for the reflectance data (Huemm-
rich et al., 2005).

The faPAR retrievals are performed by comparing observed and modeled surface
directional reflectances for a suite of canopy structures and soil patterns that cov-
ers a range of expected natural conditions (Myneni et al., 2002; King et al., 2004).
The resulting probability distributions are then checked for energy conservation,
which limits the number of acceptable solutions (Myneni et al., 2002). If no accept-
able solutions were found, a backup algorithm derives faPAR as biome-specific
linear functions of normalised difference vegetation index (NDVI). For each day,
faPAR is calculated as the mean of all possible solutions for a given pixel (Huemm-
rich et al., 2005). The final product reports the maximum clear-sky daily value of
an 8 day aggregation period (Plummer, 2006).

Meteorological data are provided by the NASA Global Modeling and Assimilation
Office (GMAO) (used to be Data Assimilation Office (DAO)) at a resolution of 1◦ x
1.25◦ and 3 h (Heinsch et al., 2003; Zhao et al., 2005). These data are generated
by the Goddard EOS Data Assimilation System (GEOS-DAS) based on general
circulation model outputs, boundary conditions (sea surface temperature, terrain,
etc.) and surface observations to form a regular gridded meteorological data set
(Zhao et al., 2005; Bloom et al., 2005; Atlas and Lucchesi, 2000). From these
original data, the the current version of the MOD17 algorithm (collection 5) derives
average daily VPD, daily minimum temperature Tmin and total shortwave radiation
and interpolates them to the 1 km resolution of the MODIS pixels.

1.5.3.3 Assessment of the MOD17 model

There is general agreement that the MODIS algorithm captures the seasonality
of site GPP quite well across a wide array of climates under non-drought condi-
tions (Plummer, 2006). However, the MOD17 GPP product does have a number
of weaknesses caused by the choice of input data (meteorologic, radiometric, bio-
physical), model parameterization and the algorithm itself (Plummer, 2006; Hein-
sch et al., 2006).

Uncertainties propagated from input data

The classification accuracy of the MOD12Q1 land cover product, which is reported
to be 65-80% (Cohen et al., 2003), influences the MOD17 GPP twofold: through
the biome-specific model parameters and indirectly through the MODIS faPAR
algorithm. During land cover classification, most problems occur while trying to
differentiate between different forest classes. According to (Plummer, 2006), pa-
rameter differences between forest classes are small, thus the net effect is small.
However, validation of remote-sensing-based biophysical products is complicated
by a underrepresentation of validation sites with grass and evergreen broad leaves
(Baret et al., 2006).
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The representativeness of the MOD15 fraction of absorbed photosynthetically
active radiation (faPAR) is not clear. Plummer (2006) states that the ”use of
the maximum eight-day absorption may undervalue the impact of this canopy
structure (Heinsch et al., 2006; Ritts et al., 2006; Leuning et al., 2005). In addition,
it is unclear whether the maximum is truly representative of the situation over eight
days due to variation in atmospheric conditions and cloud”.

The coarse resolution of the assimilated meteorology can result in site specific
mismatches (Turner et al., 2005). As long as there is no accurate reanalysis prod-
uct available with a higher spatial resolution, this problem cannot be overcome on
a global scale. Collection 6 of the MOD17 product will be fed by a more recent
version of GMAO data with higher spatial resolution (MODIS Land Team, 2009;
Rienecker et al., 2008).

Problems resulting from model structure

While global models, especially if they are to be operated in near-real time, need to
be simple (Heinsch et al., 2003), the appropriateness of the MOD17 model struc-
ture for certain conditions has been questioned. Most of all, the performance of
MOD17 in drought conditions is criticised (Turner et al., 2005; Leuning et al., 2005;
Plummer, 2006; Hwang et al., 2008). The inclusion of a parameter describing soil
water availability in stead of or in addition to the VPD control in the photosynthesis
model was suggested (Reichstein et al., 2004), and a better representation of GPP
has indeed been demonstrated in site-level studies (Leuning et al., 2005; Kanniah
et al., 2009a). However, an accurate proxy of plant available soil water content
does not yet seem to exist on a global scale. Soil moisture estimates derived from
microwave remote sensing are only available for the uppermost centimeters and
especially uncertain in densely vegetated areas. Proxies based on a ratio of pre-
cipitation and evapotranspiration (Leuning et al., 2005)are not readily applicable
on a global scale, because global precipitation data, either from reanalysis (Ruiz-
Barradas and Nigam, 2005) or from remote sensing, are not yet considered reliable
enough.

There is also concern that assuming a constant LUEmax for each land cover class
is an oversimplification (Turner et al., 2005; Leuning et al., 2005). During cloudy
conditions, when radiation is more uniformly distributed, i.e mostly diffuse, LUE is
known to be higher compared to cloud-free days (Knohl and Baldocchi, 2008). LUE
also changes seasonally due to changes in leaf pigment content (Turner, 2003).
Same-biome variability of LUE as well as mixing of different classes within one
pixel are additional sources of error (Plummer, 2006).
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1.6 Estimating light use efficiency from space

Many problems of the LUE-based models of photosynthetic assimilation discussed
in section 1.5.3.3 would become irrelevant if actual LUE could be derived from
remotely sensed data with reasonable uncertainty. The two most promising buz-
zwords for a direct, remote estimation of LUE are chlorophyll fluoresence and PRI.
Both are based on the fact that light energy, after having being passed to reac-
tion center chlorophylls (see section 1.2.1), is utilized by one of three competitive
processes (Robinson, 2001):

• assimilatory and nonassimilatory photochemistry (photochemical quench-
ing),

• dissipation as heat (nonphotochemical quenching, photoprotection), see sec-
tion 1.2.1

• dissipation as chlorophyll fluorescence (re-emission of light at longer wave-
length than the excitation energy).

Since the energy balance between light harvesting and photosynthetic use plus
dissipation must be kept, quantification of the dissipation processes allows infer-
ence about photosynthesis.

1.6.1 Estimating LUE with fluorescence measurements

The competition of fluorescence with photosynthesis for the use of absorbed light
energy has enabled generations of plant physiologists to use it as a tool for assess-
ing the vitality of the photosynthetic system (Papageorgiou and Govindjee, 2005;
Baker, 2008; Meroni et al., 2009b).

The chlorophyll in leaves has a fluorescence emission spectrum in the waveband
between 650 and 800 nm, peaking at ca. 690 nm and 740 nm (Grace et al., 2007).

In field or laboratory assessments of plant stress is often inferred from changes in
fluorescence during several minutes following artificial illumination (active fluores-
cence). These saturating light pulses are impractical at the canopy scale (Rascher
and Pieruschka, 2008), therefore LASER-induced spot or scanning methods are
being tested (Kolber et al., 1998, 2005; Ananyev et al., 2005; Rascher and Pier-
uschka, 2008)

Alternatively, the ’passive’ fluorescence triggered by sunlight can be used as an
indicator for LUE (Flexas et al., 2002). The radiation emitted as fluorescence is
added as a weak signal to the reflected solar radiation (Meroni et al., 2009b). This
solar-induced fluorescence is 2-3% or less of the reflectance signal (Grace et al.,
2007). This implies that great care must be taken to separate the two signals. One
strategy to achieve this involves measuring the emitted radiation in ’dark lines’ of
the solar spectrum. Little incident energy and thus little reflected radiation in these
spectral wavebands increases the relative contribution of fluorescence. Several
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of those ’dark lines’ result from absorption in the sun’s atmosphere (Frauenhofer
lines). These features are numerous, but only one coincides with the fluorescence
emission spectrum (Grace et al., 2007): the Hα feature centered at 656.4 nm. They
are also very narrow (0.04-0.4 nm), so a high spectral resolution is necessary to
use these features for fluorescence measurements. Wider absorption features
result from absorption by gasses in the Earth’s atmosphere, most notably the O2-B
(687.0 nm) and O2-A (760.4 nm) absorption bands. These absorption lines can
be easily used for ground-based measurements. Measuring within these telluric
absorption bands using air-borne or space-borne sensors requires a very accurate
atmospheric correction, since absorption acts two-way: both incident and outgoing
radiation are affected (Davidson, Malcolm et al., 2003; Guanter et al., 2007).

In their review on remote sensing of sun-induced chlorophyll fluorescence Meroni
et al. (2009b) conclude "that today ground-based estimation of [fluorescence] can
be achieved by several commercially available field spectrometers while there is
still a need for technical development in airborne and spaceborne sensors to better
fit the spectral requirements for precise [fluorescence] retrieval".

Before satellite-based fluorescence measurements can be used to estimate GPP
for large regions, several issues need to be addressed (Damm et al., 2010):

• Atmospheric effects must be corrected precisely (Guanter et al., 2007).

• The influence of canopy structure on the fluorescence signal must be better
understood.

• The contribution of different surface elements to one measurement by the
remote fluorescence sensor (i.e. mixed pixel effects) needs to be considered.

• The impact of changing sun-sensor geometry on the fluorescence signal
(Meroni et al., 2008) requires further studies.

• The understanding of physiological relationship between fluorescence and
photosynthesis needs to be developed further.

1.6.2 photochemical reflectance index (PRI) as proxy for LUE

Physiological background & formulation of PRI

The changes in pigment composition induced by the photo-protective mechanism
of xanthophyll-de-epoxidation (c.f. section 1.2.1) result in a change of reflectance
near 531 nm (Bilger et al., 1989; Gamon et al., 1992, 1997; Peñuelas et al., 1995,
c.f. Fig. 1.4). Gamon et al. (1993a) found this reflectance change at approximately
531 nm in 20 species representing a wide range of habitats, phenologies and pho-
tosynthetic pathways. The exact spectral position might vary depending on the
relative contribution of the component caused by xanthophyll pigment interconver-
sion and a component caused by chloroplast conformational changes.
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Fig. 1.4: A) Difference in reflectance as a function of stress level; T0: Unstressed
sunflower leaves at time zero; T1: light-stressed leaves after 40 minutes B) Observed
change in leaf reflectance. Adapted from Gamon et al. (1990); Hall et al. (2008).

Normalising reflectance at this wavelength (R531) by reflectance at a reference
wavelength (Rref ) helps to correct for changes in ’background’ reflectance that
might be caused by a number of optical effects, including changes in illumination
angle and chloroplast movements (Gamon et al., 1993a, , see also the change in
’background reflectance for Zea sp. in Fig. 1.5):

PRIref =
R531 −Rref
R531 +Rref

(1.10)

Gamon et al. (1993a) suggest 570 nm as an optimal reference wavelength at
leaf level because it is situated near the right shoulder of the xanthophyll-de-
epoxidation reflectance feature. The suitability of this (R570) and other reference
bands have been tested based on statistical correlations (e.g. Gamon et al., 1992;
Inoue et al., 2008). The scientific literature does not agree on a single best refer-
ence wavelength for PRI, which makes cross-study comparisons difficult (Garbul-
sky et al., 2011). Garbulsky et al. (2011) summarise that "it is not entirely clear if
the best wavelengths for measuring this feature at the leaf scale (531 and 570 nm)
are necessarily the best wavelengths at progressively larger scales, where multi-
ple scattering and other confounding effects may alter the spectral response of the
xanthophyll cycle feature, much in the way that pigment absorption peaks can vary
depending upon their chemical and scattering medium."

More work is needed to determine a PRI-formulation that can be applied on large
areas based remote sensing data.

Successful studies of PRI as indicator of photosynthetic efficiency

PRI has been effective in detecting changes in photosynthetic efficiency in single
leaves (Peñuelas et al., 1995; Gamon et al., 1997; Méthy, 2000; Guo and Trotter,
2004) and in small canopies of sunflower (Gamon et al., 1992), barley (Filella et al.,
1996), chaparral (Stylinski et al., 2002) and other species (Trotter et al., 2002) as
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Fig. 1.5: Reflectance changes as a function of wavelength 10 minutes after sudden high
light exposure of dark-adapted leaves representing three photosynthetic pathways (C3,
C4, CAM). Reflectance has been normalised to reflectance at time zero. Each spectrum
represents the mean of measurements on three leaves. Adapted from Gamon et al.
(1993a).

well as at the ecosystem scale (Peñuelas and Inoue, 2000; Rahman et al., 2001;
Nichol et al., 2000, 2002).

By tracking the xanthophyll de-epoxidation state and thus LUE, PRI becomes com-
plementary to spectral indices such as normalised difference vegetation index
(NDVI) and enhanced vegetation index (EVI) that are good indicators of canopy
greenness but are no proxy of fluctuations in photosynthetic activity unrelated to
changes of greenness and leaf area (Running and Nemani, 1988; Gamon et al.,
1993b; Asner et al., 2004).

In particular, PRI has been successfully applied in detecting changes of photosyn-
thetic activity caused by water stress (Tambussi et al., 2002; Thenot et al., 2002;
Asner et al., 2004; Sun et al., 2008; Suárez et al., 2008; Peguero-Pina et al., 2008;
Suárez et al., 2010), ozone-induced stress (Meroni et al., 2009a; Panigada et al.,
2009), salinity stress (Naumann et al., 2008a,b), as well as nutrient enrichment
and eutrophication (Siciliano et al., 2008).

Challenges

In some studies at canopy and ecosystem level no statistically significant corre-
lation between PRI and LUE was observed (Méthy, 2000). These difficulties to
upscale the PRI-LUE-relationship have several roots. One issue are the differ-
ent footprints of the PRI-sensor and the set-up used for assessing ecosystem
LUE—usually an eddy covariance tower (Méthy, 2000). Often this spatial mis-
match goes along with a temporal mismatch: while the PRI measurements are
instantaneous, the eddy covariance technique averages measurements over half-
hourly intervals. Observing different subsets of the land surface with the two meth-
ods has a 3-dimensional, structural aspect. While eddy covariance flux measure-
ments integrate vertically over the footprint, any type of PRI sensor only records
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what is in its ’line of sight’, including some scattered photons. It does not ’see’ pho-
tosynthetically active surface obstructed by leaves and branches. A discrepancy
between the two measurement methods is unavoidable as soon as the relative
contributions of plant materials with different LUEs to the overall signal recorded
the PRI-sensor differs from the proportions within the flux-tower footprint. Pho-
tosynthetic efficiency is known to vary between species (Guo and Trotter, 2004),
between shaded and sunlit leaves of the same species (Peñuelas et al., 1995) and
with age. In addition, the PRI is influenced by the contribution of photosyntheti-
cally inactive plant material and soil to the reflectance signal. Especially for sparse
canopies with LAI <3, variations in soil background reflectance strongly influence
the PRI signal (Barton and North, 2001; Filella et al., 2004).

An emergent property at the canopy level is that LUE increases on cloudy days,
even if the total incident energy decreases to 70-80% of the value on a clear day
(Gu et al., 1999). This property arises from the saturation of leaf photosynthesis
at a certain illumination intensity. On cloudy days, the fraction of diffuse light in-
creases: light does not arrive as a beam from only one direction, but from many
directions. Hence a large number of leaves receive a moderate amount of light
which can result in a larger overall LUE compared to cloud-free days on which only
the top leaves are illuminated (often beyond their photosynthetic capacity) while a
large fraction of leaves remains in deep shade (Gu, 2002; Farquhar and Roderick,
2003).

The limitations imposed by the inherent heterogeneity of ecosystems additionally
affect radiation measurements when the position of sensor and/ or the sun rel-
ative to the land surface changes in between acquisitions (Louis et al., 2005).
Apart from these effects of viewing and illumination geometry—often summarized
as the bidirectional reflectance distribution function (BRDF)-effect on PRI (Suárez
et al., 2008)—the ecosystem itself changes diurnally and seasonally. Leaves might
change their orientation and leaf area varies—differently for different species within
an ecosystem (Barton and North, 2001; Hilker et al., 2008b).

Also, the total pool of photosynthetic pigments and the relative contributions of
carotenoids and chlorophylls to it vary; these changes show up in PRI measured
over seasons or years (Stylinski et al., 2002; Sims and Gamon, 2002; Filella et al.,
2009).

The PRIs sensitivity to carotenoid/ chlorophyll ration actually seems to be an ad-
vantage for tracking ecosystem LUE (Filella et al., 2009). Carotenoid pigments
other then xanthophylls, for example b-carotene or lutein, are also involved in pho-
toprotective processes (Frank and Brudvig, 2004; Telfer, 2005; Dall’Osto et al.,
2006).

Under stress or during leaf senescence—while photosynthetic efficiency de-
creases—chlorophyll degrades faster than carotenoids (Gitelson and Merzlyak,
1994; Peñuelas et al., 1995). Therefore, environmental stress often increases the
carotenoid/chlorophyll ratio, which correlates with PRI.

Based on these considerations, Filella et al. (2009) conclude that PRI "may provide
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an integrated remote sensing assessment of photoprotective and accessory pig-
ments and, therefore, of photosynthetic radiation-use efficiency to the extent that
this is correlated with carotenoid/chlorophyll ratio." They found that "over the long
term (weeks), PRI tracked the variations in the carotenoids/chlorophyll-a+b ratio
and, over the short term (minutes), the changes in the de-epoxidation state."

PRI from space-borne sensors

While there have been several successful studies with air-borne PRI-sensors (e.g.
Nichol et al., 2000, 2002; Asner et al., 2004, 2005), only few studies have at-
tempted an investigation of the PRI-LUE relationship with satellite data so far. Lim-
iting factors are probably the number of space-borne sensors with the necessary
narrow spectral bands, the pre-processing required for PRI calculation (correction
for atmospheric disturbances and BRDF effects) and other challenges detailed
above. However, some studies on boreal, temperate, and Mediterranean type
ecosystems have successfully tested MODIS-derived PRI as a proxy for ecosys-
tem LUE (Drolet et al., 2005, 2008; Rahman et al., 2004; Garbulsky et al., 2008;
Xie et al., 2009).

MODIS seems to be the most appropriate sensor currently available to test space-
borne PRI because one of its 10 nm wide "ocean bands" is centred at 531 nm.
The not too narrow spectral bands might actually be an advantage, given that
Gamon et al. (1992, 1993a) found that the optimum wavelength for LUE tracking
varies in between species and canopy types. The temporal resolution of MODIS
data is comparatively high. Since both the Terra and the Aqua satellites have a
roughly identical MODIS sensor aboard, two or more data acquisitions per day can
take place under cloud free conditions. The MODIS observation footprint for the
required spectral bands is about 1 km2 if the sensor view zenith angle is limited to
no more than 40◦ (Wolfe et al., 1998). This is in the same order of magnitude as the
footprint of eddy covariance towers, although the fetch of eddy covariance systems
depends on measurement height, the surface roughness, and the characteristics
of the boundary layer as well as the atmospheric stability (Rebmann et al., 2005).
We can assume comparable conditions in the remotely sensed area and the flux
tower source area when restricting the analysis to towers located in a large enough
homogeneous area. Hence, for some carefully selected eddy covariance sites a
comparison to ground based estimates of light use efficiency is possible. At a
homogeneous site the results will not be compromised if some of the 1 km MODIS
pixel are not properly centered on the eddy covariance tower and do only partially
coincide with the flux-tower footprint area.

The quality flags associated with every MODIS pixel allow for screening accord-
ing to cloud cover and the general usefulness of the data. Given an ideally ho-
mogeneous study site the following issues need to be taken into account when
interpreting PRI values in 1 km MODIS pixels:

1. The sensor lacks a spectral band at 570 nm (c.f. Table 1.2), hence another
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reference band needs to be chosen.

2. Changes in viewing and illumination geometry in between measurements are
likely to influence PRI (Barton and North, 2001).

3. A stringent atmospheric correction should be performed in order to avoid
variations simply due to differences in atmospheric composition (Grace et al.,
2007).

4. In addition to these difficulties, studies at a regional scale (or larger) would
ultimately need to deal with sub-pixel heterogeneity.

Tab. 1.2: Bandwidth of the MODIS’ spectral bands used in this study.

Band Bandwidth (nm) Use in this study
1 620-670 PRI, NDVI, EVI
2 841-876 NDVI, EVI
3 459-479 EVI
4 545-565 PRI
11 526-536 PRI
12 546-556 PRI
13 662-672 PRI
14 673-683 PRI

Hardly any space-borne LUE estimation has been undertaken so far for more wa-
ter limited ecosystems. Garbulsky et al. (2008) estimated LUE for an evergreen
Mediterranean oak forest in Castelporziano, Italy. However, the trees there do
have access to groundwater (Damm et al., 2002), thus water limitation is not se-
vere. It is important to bridge this gap because the area affected by drought is
about to increase: According to Christensen et al. (2007), it is likely that annual
precipitation will decrease in several regions, among them Central Europe, the
Mediterranean, the south-western US, Central America and Southern Australia
(c.f. section 1.2.2.2). For the Mediterranean this goes along with an increased
risk of summer drought (Giorgi, 2006). It is crucial to improve the performance of
diagnostic models with respect to drought events. Upgraded data-oriented models
can then serve as benchmarks to improve current process models.

It is crucial to find out if spaceborne PRI can help to improve assessments of
carbon uptake for many of the world’s ecosystems.

1.7 Aims of this study

To improve MOD17-type-models of gross primary productivity it is attractive to de-
rive LUE directly from just one kind of satellite data, without relying on estimates of
different meteorological variables. This study will help to find out if photochemical
reflectance index (PRI) can function as a proxy of LUE in global models.
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This study will be based on radiances recorded by the MODIS on board the Terra
and Aqua satellites because this configuration provides a useful temporal reso-
lution and a spectral band around 531 nm. However, MODIS does not have the
usual PRI reference band at 570 nm. Thus, the MODIS PRI needs to be based on
several alternative reference bands. One goal of this study is to identify the most
suitable among all possible reference bands, first of all for a test site.

Changes of LUE in drought-tolerant evergreen species are often not paralleled
by changes in NDVI,LAI or canopy structure (Gamon et al., 1992; Running and
Nemani, 1988).

Due to negligible changes in radiation interception in these Mediterranean ever-
green fortests, it is of great importance to have accurate measurements of short-
term changes in radiation-use efficiency (Filella et al., 2009). Thus sclerophyll
dominated ecosystems are a good starting point for testing the performance of
satellite-based PRI as LUE proxy. A pilot study within this thesis will therefore con-
centrate on a Mediterranean Quercus ilex forest. Special emphasis will be placed
on the capability of satellite-based PRI to estimate LUE during drought events
because this is where current diagnostic models of GPP have deficiencies. Specif-
ically, it will be assessed which reference band is most suitable for this application.
The influence of different methods of atmospheric correction on the PRI-LUE rela-
tionship will also be tested in this pilot study. Though, for reasons detailed above,
a relationship between LUE and NDVI or enhanced vegetation index (EVI) is not
expected for this ecosystem, these indices are included in the analysis as bench-
marks.

Despite the fluctuations in illumination geometry, dimension of the surface area
sensed by each instantaneous field-of-view and background reflectance at every
site, the site level models based on MODIS PRI published so far yielded good
agreement with observed LUE. That considerable potential exists for mapping
LUE with a common model has also been shown by Drolet et al. (2008), who
found a unifying model for eight sites in central Saskatchewan. These boreal sites
are close to each other (within the confines of one satellite scene), hence they can
be simultaneously monitored instead of by comparing data from different image
acquisitions. The viewing geometry and atmospheric disturbance of the satellite
signal is therefore similar. Consequentially, the next step is to evaluate PRI based
models across sites and satellite scenes.

Therefore, in a second stage following the pilot study on the Mediterranean holm
oak forest, the analysis will be expanded from one ecosystem to sites representing
a diversity of plant functional types and different vegetation densities. The objective
of this study is to discover if the known limitations of PRI can be overcome and a
single PRI-based model of LUE (i.e. based on the same reference band, with the
same parameterisation) can be applied under a wide range of conditions. So far
it is unclear if—using satellite data with rather coarse spatial resolution—the same
empirical model can be applied at multiple sites or if different reference bands have
to be used depending on for example plant functional type and vegetation density.
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A secondary objective of this study is to learn how different frequently used faPAR
products affect the in-situ LUE estimates that are used as ground truth.
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The main types of data used in this study are local eddy covariance measurements
(plus associated meteorological variables) and MODIS satellite data, which are
available globally. The relationship of MODIS-PRI to LUE is tested at site level. If
a universally applicable relationship between MODIS-PRI and LUE can be found,
this would provide an opportunity to upscale LUE to larger areas.

2.1 Flux data from eddy covariance measurements

2.1.1 Processing of flux measurements according to FLUXNET stan-
dards

For this study, flux and micro-meteorological data were extracted from the
FLUXNET LaThuile database (http://www.fluxdata.org/DataInfo/default.aspx). The
data of that data base were recorded at 253 individual research sites encompass-
ing 7 climate types and 11 plant functional types, following network-specific proto-
cols (Aubinet et al., 2000).

The assumptions on which the simplified equation 1.6 in section 1.3.2 is based are
often not fulfilled. Horizontal turbulent transport and advection do occur, advection,
for example, results from patchy vegetation or uneven terrain (Lee, 1998; Finnigan

http://www.fluxdata.org/DataInfo/default.aspx
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et al., 2003; Finnigan, 2008). There is no technique available to correct fully for
advection effects. However, some first-order corrections can be made for moder-
ate effects of topography. These corrections aim to re-align a coordinate system
in a way that the mean vertical flux that is zero so that hence equation 1.6 can be
applied again (Baldocchi et al., 1988; McMillen, 1988; Baldocchi, 2008). Several
different techniques are available and can be chosen according to the particulari-
ties of the measurement footprint (Finnigan et al., 2003; Finnigan, 2004). In some
cases this correction is not sufficient and the magnitude of the bias due to advec-
tion remains unknown unless measured (Feigenwinter et al., 2008; Yi et al., 2008).
However, measuring advection directly is difficult, because it involves multiple sets
of eddy covariance towers to measure flux divergence or horizontal gradients in
fluxes and scalars (Aubinet et al., 2003a; Feigenwinter et al., 2004).

Another correction needs to be introduced to avoid that the flux measurements are
biased by insufficient turbulent mixing, which is measured as friction velocity (u*)
(Goulden et al., 1996; Aubinet et al., 2000; Barford et al., 2001; Gu et al., 2005). At
nighttime, the atmospheres thermal stratification stabilises. This can cause an iso-
lation of the air around the vegetation from the air moving in the atmosphere above
(Baldocchi, 2008). Under these circumstances, the CO2 fluxes measured by the
eddy covariance system would not represent the gas exchange of the ecosystem
(Aubinet et al., 2005; Sun et al., 2007). The u* threshold for this decoupling ranges
between 0.1 and 0.5 m s−1, depending on topography and canopy height (Aubi-
net et al., 2000; Loescher et al., 2006). To correct the data for advective transport
measurements acquired at low-turbulence conditions are discarded (u* filtering)
(Aubinet et al., 2005).

To validate and calibrate ecosystem models it is necessary to partition the mea-
sured net ecosystem exchange (NEE) into its gross primary productivity (GPP)
and total ecosystem respiration (Reco) components. The flux partitioning is essen-
tially an extrapolation of Reco data from night- to day-time, based on short-term
relationships between temperature and Reco (Reichstein et al., 2005). Using short-
term sensitivities instead of long-term dependencies reduces the influence of other
confounding factors, such as soil moisture or growth dynamics. The daytime Reco

resulting from this extrapolation is subsequently subtracted from NEE to calculate
GPP. The validity of this flux separation has been corroborated by a new method
using a light response curve approach, independent of night-time data (Lasslop
et al., 2010).

To come up with long, uninterrupted series of flux data for creating carbon budgets
on daily, weekly, monthly or yearly time steps, gap filling is an essential processing
step (Falge, 2001; Moffat et al., 2007). It is also necessary for cross-site com-
parisons, validation of satellite products, model inversions or synthesis studies.
Incomplete records result from u*-filtering and other data rejections under certain
climatic conditions (e.g. precipitation, dew), but also from malfunctioning, main-
tenance and calibration of the sensors (Luyssaert et al., 2009). The uncertainty
associated with the gap filling (i.e. interpolation) becomes larger with increasing
gap length (Moffat et al., 2007), especially during periods of rapid change such as



2.1. Flux data from eddy covariance measurements 29

green-up and senescence.

The LaThuile data collection contains—besides NEE, GPP and Reco

fluxes—radiation measurements (photosynthetic photon flux density (PPFD),
global radiation (Rg), net radiation (Rn), for some sites shortwave and longwave
incoming and outgoing radiation, below canopy or reflected PPFD), precipitation
and temperature records, sensible and latent heat fluxes, for some sites soil water
content data and in-situ faPAR measurements, as well as some derived quantities
such as surface conductance, soil water storage and evapotranspiration. The data
are available at half-hourly and daily temporal resolution.

2.1.2 A note on uncertainty

Many studies have addressed the robustness of eddy flux measurements, also
with regard to differences between sites. Uncertainties in eddy-covariance derived
ecosystem GPP values result from measurement uncertainties, gap-filling and flux
partitioning. Reichstein et al. (2005) and Papale et al. (2006) provide an extensive
summary of the uncertainties related to eddy flux data and present a standard-
ized processing method including spike detection, storage correction, u* filtering,
gap-filling and partitioning methods that has been applied to all net ecosystem
exchange data within the FLUXNET LaThuille data collection. Uncertainties due
to different processing of site data are thus minimised. Given a homogeneous
site, the largest uncertainty results from the so-called u*-correction (Papale et al.,
2006).

Another potentially big source of uncertainty, the partitioning of net ecosystem flux
into ecosystem respiration and gross primary productivity, has been addressed by
Lasslop et al. (2010). Their comparison of two partitioning methods shows a strong
correlation and no significant biases for gross primary productivity and ecosys-
tem respiration. Although the overall agreement of the two partitioning methods is
good, there can be large deviations for specific sites or years. Therefore, the influ-
ence of the partitioning method on the relationship between LUE and PRI has been
checked for the sites used in this study. The mean difference between GPP derived
with either flux partitioning method was calculated for each site-year. By dividing
this GPP-uncertainty-measure by daily aPAR, the resulting uncertainty in LUE was
calculated and subsequently added to/ subtracted from each daily LUE value to
visualise the range of possible LUEs(c.f. Fig. 4.6). Including this uncertainty did
neither change the observed patterns nor the conclusions. In fact, since GPP is a
gross flux, the relative error is quite small, while for NEE (not considered here) the
error can be relatively larger.

The high frequency site data are aggregated to half-hourly data by the principal
investigators of the individual sites with different software, which presents another
source of uncertainty. A comparison of different techniques performed by Mauder
et al. (2008) indicates a good agreement among the software within 5–10% differ-
ence for 30-min CO2 flux values. Considering this uncertainty does not change the
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results presented in this thesis. The quality evaluation by Göckede et al. (2008) for
the CarboEurope-IP network demonstrated a high average data quality, and good
representativeness of the measurement data for the specified target land cover
types.

2.1.3 Study-specific preparation of eddy covariance data and asso-
ciated measurements

The half-hourly GPP extracted from the FLUXNET LaThulle collection were quality-
checked with the flags included in the data set. Data points where NEE or PPFD
measurements were not original or high quality gap filled were discarded. As a
result of the standardised partitioning of the net CO2 flux GPP values can become
negative. When the ‘true’ value is close to zero, the statistical random error might
induce negative GPP values. In the pilot study, only 0.46 % of the night time GPP
values (with photosynthetic photon flux density < 100µmol m2 s−1) are lower than
zero. Records associated with negative GPP were excluded from the analysis.

To ensure that the data recorded by MODIS are representative and not contami-
nated by clouds, it is crucial to know if a satellite image was taken during clear-sky
conditions. Thus, for each day and each study site diurnal curves of incident PPFD
(as a measure of PAR) were plotted. The deviation of the actual PPFD-curve from
the typical diurnal course on a cloud-free day during the same time of year was
visually inspected and used to label days as ’cloud-free’, ’cloud-free during a in-
terval’ (start and end of that interval were recorded), or ’cloudy’, Fig. 2.1 shows
exemplary PAR curves for both a cloudy day and a day with clear-sky. The mea-
surements were taken within one week.
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Fig. 2.1: Incoming photosynthetically active radiation at a site in southern France on a
cloud free and a cloudy day, along with the curve that represents the diurnal course of
incident PAR on a cloud free day for that particular site and time of year. These curves
were used to identify cloud-free days for all sites.
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2.2 Remotely sensed data

2.2.1 MODIS data for calculating PRI

To process the MODIS data for this study the procedure described by Drolet et al.
(2005) was modified. Five MODIS products were downloaded from the Level 1 and
Atmosphere Archive and Distribution System (http://ladsweb.nascom.nasa.gov)
and the Earth Observing System data gateway http://redhook.gsfc.nasa.gov/
~imswww/pub/imswelcome/). Of those products, from both the Terra (product name
starts with ’MOD’) and Aqua (product name starts with ’MYD’) satellite, all scenes
containing the tower locations of the study sites were selected.

The MOD/MYD021KM product contains calibrated digital signals measured by the
MODIS sensor, from which at-sensor reflectances and radiances at 1 km spatial
resolution can be calculated from two pairs of scale and offset terms included in
the product (Toller et al., 2005). We calculated top-of-atmosphere reflectances for
the spectral bands listed in Table 1.2.

The MOD/MYD03 product has the same spatial extent and resolution and provides
the geographic coordinates as well as the solar and sensor zenith and azimuth
angles of each pixel. These geolocation data were used to extract the spectral in-
formation of the pixel closest to each tower location. For the same location aerosol
optical thickness was extracted from the MOD04 product and satellite-based esti-
mates of cloud coverage were obtained from the MOD35 product.

Prior to further processing those acquisition dates were discarded

• where the quality flags attached to the MODIS products indicated saturation
of a detector,

• where cloud cover is likely,

• where the quality of the atmospheric optical thickness estimation in the
MOD04 product is poor or

• where the sensor viewing angle at the tower site is more than 40◦ (otherwise
the MODIS pixel footprint would get too large, the result being a mixed signal
from different land cover classes, c.f. Wolfe et al., 1998).

2.2.2 Effect of correction for surface anisotrophy on photochemical
reflectance index

A small preliminary analysis was done to evaluate whether the accuracy of a
MODIS-based PRI would be improved by a BRDF-correction based on readily
available data.

For this, BRDF parameters derived from reflectance data recorded by the
PARASOL instrument aboard the POLDER3 satellite have been used (François-

http://ladsweb.nascom.nasa.gov
http://redhook.gsfc.nasa.gov/~imswww/pub/imswelcome/
http://redhook.gsfc.nasa.gov/~imswww/pub/imswelcome/
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Marie Bréon., pers. comm.). These BRDF parameters have been derived for each
of 4 different NDVI classes per biome type (IGBP-classification Bacour and Bréon,
2005; Vermote et al., 2009). This look-up-table approach was chosen because
there are relatively few places available where enough observations could be col-
lected to constrain the BRDF model (Lacaze et al., 2009). The temporal variations
in reflectance anisotropy within the BRDF-estimation-period at a given site are as-
sumed to be small.

For the site of the pilot study, MODIS-reflectance data have been corrected with
the POLDER/PARASOL BRDF parameters matching the current NDVI observa-
tion. A comparison between the corrected and the uncorrected data can be seen
in Fig. 2.2. While the BRDF-correction does influence the reflectance of the indi-
vidual bands, the effects cancel each other out due to the normalisation implicit
in the photochemical reflectance index (PRI). Correction the reflectance data for
scattering and absorption effects by the atmosphere using a model specifically de-
veloped for MODIS data (6S) does influence the PRI-signal (c.f. Fig. 2.3). It can be
concluded that correcting MODIS data for surface anisotropy with current globally
available correction methods would not improve the accuracy of LUE prediction
and is thus not worth doing.
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Fig. 2.2: Attempted correction for surface reflectance anisotropy with POLDER/
PARASOL BRDF parameters (6 × 6 km) for 2002 at FR-Pue without explicit consideration
of atmospheric effects. While the correction influences the reflectance of the individual
bands that are used to compute PRI, these effects cancel each other out in the vegetation
index itself.

2.2.3 Geolocation

For all satellite scenes used in this study, the orientation of the pixel closest to
the tower location has been plotted along with borders of distinct land cover types
and other features (such as roads) that are likely to affect the reflectance signal
(see Fig. 2.4). All these images were visually inspected. Whenever the tower-pixel
included a significant fraction of something other than the ecosystem observed by
the flux tower, the respective satellite scene has been discarded.
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Fig. 2.3: Surface reflectance corrected for anisotropy with MODIS BRDF parameters
versus surface reflection assuming an isotropic surface for 2000-2005 at FR-Pue. In both
cases a correction for atmospheric effects has been perfomed using 6S with the same
input, so the difference is only due to applying the BRDF correction with 6S. The relatively
small changes in reflectance (2.0-3.5%) result in rather large differences in PRI (13-31%).
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Chapter summary

Gross primary productivity (GPP) changes occur at different time-scales and due
to various mechanisms such as variations in leaf area, chlorophyll content, rubisco
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activity, and stomatal conductance. Diagnostic estimates of primary productivity
are obviously error prone when these changes are not accounted for. Additional
complications arise when factors influencing a biome-specific maximum light use
efficiency (LUE) must be estimated over a large area. In these cases a direct es-
timation of ecosystem LUE could reduce uncertainty of GPP estimates. Here, we
analyse whether a MODIS-based photochemical reflectance index (PRI) is a use-
ful proxy for the light use efficiency of a Mediterranean Quercus ilex forest. As the
originally proposed reference band for PRI is not available on MODIS, we tested
the reference bands 1 (620-670 nm), 4 (545-565 nm), 12 (546-556 nm), 13 (662-
672 nm), and 14 (673-683 nm) using different atmospheric correction algorithms.
We repeated the analysis with different temporal resolutions of LUE (half-hourly to
daily). The strongest correlation between LUE and PRI was found when consider-
ing only a narrow range of viewing angles at a time (especially 0-10◦ and 30-40◦).
We found that the MODIS-based PRI was able to track ecosystem LUE even dur-
ing severe summer time water limitation. For this Mediterranean-type ecosystem
we could show that a GPP estimation based on PRI is a huge improvement com-
pared to the MODIS GPP algorithm. In this study, MODIS spectral band 1 turned
out to be the most suitable reference band for PRI, followed by the narrow red
bands 13 and 14. As to date no universally applicable reference band was iden-
tified in MODIS-based PRI studies, we advocate thorough testing for the optimal
band combination in future studies.

3.1 Introduction

Many diagnostic models of terrestrial ecosystem productivity compute gross pri-
mary productivity (GPP) as the product of the amount of absorbed photosyntheti-
cally active radiation (aPAR) and a light use efficiency term (Monteith, 1972; Mon-
teith and Moss, 1977; Kumar and Monteith, 1981). aPAR can be conceived as
the product of photosynthetically active radiation incident on the ground (Incident
PAR (incPAR)) and the fraction of incPAR absorbed by the vegetation (faPAR).
These entities can be derived from global meteorological fields and satellite prod-
ucts, respectively (e.g. Ruimy and Saugier (1994); Goetz and Prince (1999)).

It follows from the above that light use efficiency (LUE) is the ratio of productivity
to aPAR. In this study, we refer more specifically to LUE as mols of CO2 captured
per mol of photons absorbed. LUE is inherently variable as it is determined by the
quantum efficiency of photosynthesis (Grace et al., 2007). Photoprotective mech-
anisms reduce the photosynthetic quantum efficiency at times of environmental
stress (such as temperature extremes, water or nutrient deficit, exposure to high
light intensities, e.g. Green (2003); Runyon et al. (1994)). In addition, decreased
stomatal conductance in times of drought will reduce available CO2 and thus the
rate of photosynthesis (Galmés et al., 2007).

In current diagnostic models, the light use efficiency (LUE) term is implemented
either as a constant (sometimes stratified according to plant functional type) or
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as a (biome-specific) maximum LUE that is reduced by scalars representing en-
vironmental stress (Yuan et al., 2007). It has been shown that this look-up table
approach is not able to capture the full range of productivity dynamics, especially at
finer temporal scales (Turner, 2002; Turner et al., 2006; Schwalm et al., 2006), pri-
marily due to inaccurate maximum LUE estimates (Martel et al., 2005). Additional
uncertainty arises when environmental drivers reducing maximum LUE need to be
estimated on a global scale (Heinsch et al., 2006). Also, current remote-sensing
based models have difficulties to detect drought stress (Turner et al., 2005) un-
less soil water content is accounted for (Leuning et al., 2005), which is difficult on
a global scale. If we can obtain direct estimations of LUE from remote sensing
data, this will lead us to more accurate calculations of GPP. We would need an
integrative indicator of how photosynthetic capacity is controlled by environmental
stress. Traditional vegetation indices such as the normalised difference vegeta-
tion index (NDVI) seem inappropriate for this task because they mainly measure
greenness and can only track decreases in photosynthetic activity when they lead
to yellowing or shedding of leaves (Gamon et al., 1995).

Another option to estimate LUE employs the mechanisms with which plants protect
their chloroplasts from the creation of harmful reactive oxygen species. This dan-
ger arises if plants are subject to more light than they can use for photosynthesis.
The photoprotection process includes changes in the trans-thylakoid pH-gradient,
conformational changes in the chloroplasts, and the de-epoxidation of violaxanthin
via antheraxanthin to zeaxanthin (Demmig-Adams and Adams, 2006). The forma-
tion of zeaxanthin is necessary to dissipate excess light as heat (Demmig et al.,
1987) and at the same time decreases reflectance in a narrow wavelength range
centred around 531 nm (Gamon et al., 1990).

The photochemical reflectance index (PRI) combines reflectance at this wave-
length (ρ531) with a reference wavelength insensitive to short-term changes in
light energy conversion efficiency (usually 570 nm, ρ570) and normalises it (Ga-
mon et al., 1992; Peñuelas et al., 1995):

PRI = (ρ531 − ρ570)/(ρ531 + ρ570) (3.1)

Many studies have been conducted at the leaf and canopy scale with plants rep-
resenting different photosynthetic pathways and ecosystems. In these studies PRI
was well correlated with the epoxidation state of xanthophylls and LUE (Peñuelas
et al., 1995; Stylinski et al., 2002; Sims and Gamon, 2002; Weng et al., 2006). A
strong relationship between PRI and LUE could also be shown for plants suffering
from environmental stress affecting energy dissipation pathways, namely nitrogen
limitation (Gamon et al., 1992), high ozone concentrations (Meroni et al., 2008),
water limitation (Suárez et al., 2008), or flooding (Naumann et al., 2008a). Several
studies tested the performance of PRI as an indicator of LUE at ecosystem scale.
The test was successful for boreal ecosystems, although in these studies LUE
was based on incident PAR rather then aPAR (Nichol et al., 2000, 2002). In pre-
dominantly water limited ecosystems the applicability of PRI as LUE proxy might
be limited to vegetation types that are not subject to strong changes in canopy
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structure (Filella et al., 2004; Sims et al., 2006).

3.2 Methods

3.2.1 Study site and data

For this study, we focused on a flux tower site in the Puéchabon state forest
(43.7414◦ N, 3.5958◦ E) in southern France, 35 km north-west of Montpellier. The
Quercus ilex forest has been managed as a coppice for centuries, the last cut oc-
curred in 1942. Allard et al. (2008) give a detailed site description, but we cite the
most relevant characteristics here. The average tree height is about 5 m, the over-
storey leaf area index (LAI) stated as 2.8±0.4). The main species in the shrubby,
sparse understorey (< 2 m) are Buxus sempervirens, Phyllirea latifolia, Pistacia
terebinthus, and Juniperus oxycedrus. The climate is of Mediterranean type, with
an annual precipitation of ca. 900 mm (ranging from 550-1550 mm for 1984-2006)
of which 80 % occur between September and April. A reason to chose the Puéch-
abon site for this analysis is the role of Quercus ilex as one of the dominant species
in Mediterranean type ecosystems (Terradas, 1999), covering about 6.55 x 104 km2

(Quézel and Médail, 2003). Our analysis of the entropy, a quantity describing data
homogeneity (Clausi, 2002), of a Landsat scene subset including the flux tower
indicates that the site is homogeneous at the MODIS spatial resolution (Fig. 3.1,
similar entropy levels in ca. 1 km distance from flux tower). The variations in sur-
face properties observable within ca. 1 km around the flux tower are characteristic
for the whole area covered by Quercus ilex growing on hard karstic limestones
(ca. 4000 km2) (Lacaze et al., 1994). Moreover, the flux tower footprint reliably
represents the targeted land cover type (Göckede et al., 2008). Comparability of
remote sensing data and in-situ measurements is therefore granted.

In this study we look at the years 2002 - 2005 because satellite data as well as
flux and meteorology data were available for this time span. Processing of the flux
data has been performed according to the standard CarboEurope methods (Re-
ichstein et al., 2005; Papale et al., 2006, see section 2.1). In addition to GPP from
the LaThuile data set we used half-hourly incident photosynthetically active radi-
ation (included in LaThuile data set) and below canopy photosynthetically active
radiation (bcPAR) data (available from principal investigator, i.e. Serge Rambal).
bcPAR is calculated as an average of 14 upward looking PAR sensors installed at
different places below the canopy. Incident PAR was measured with an upward
looking PAR sensor mounted on the eddy covariance tower. We filtered the PAR
values for measurement errors (i.e. reject PAR< 0 and standard deviation (bcPAR)
> 600 µmol m−2 s−1). As faPAR values we used estimates derived from half-hourly
incPAR and below canopy PAR as well as the operational MODIS faPAR data.

We used soil moisture data to identify periods of water stress. The daily time
course of soil water storage (mm) was simulated with a soil water balance model
(Rambal, 1993) and further compared with monthly profiles of soil water con-
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Fig. 3.1: Entropy calculated for the red band of a Landsat ETM+ scene (13. Aug. 2001).
The location of the Puéchabon flux tower is indicated by a cross. The circle marks the
relatively uniform area in which a MODIS pixel containing the tower will be positioned
(radius 1km + 300 m uncertainty). Light tone: high entropy, dark tone: low entropy.

tent measured with a neutron probe and integrated over the rooting depth (c.a.
4.5m). The relationships between simulated and observed values showed very
close agreement (r2 = 0.87).

3.2.2 Benchmark ecosystem light use efficiency

In this pilot study, the light use efficiency (LUE) of an ecosystem is defined as the
overall production of photosynthates per unit of absorbed photosynthetically active
radiation. After Monteith (1972) this can be expressed as

GPP = LUE ∗ faPAR ∗ incPAR = LUE ∗ aPAR (3.2)

where GPP is gross primary productivity, PAR is incident photosynthetically active
radiation, aPAR is the absorbed PAR, and faPAR is the fraction of PAR absorbed
by the vegetation. LUE can either be seen as the ratio of GPP and aPAR or as the
slope of a—possibly non-linear—function relating GPP to aPAR. To see whether
differences arise from these two concepts, we used both as benchmarks to test the
performance of several vegetation indices. The GPP values used in this context
stem from the half-hourly eddy covariance data.

3.2.2.1 Light Use Efficiency solely based on site data

At the half-hourly scale, the fraction of absorbed photosynthetically active radiation
(faPAR) was calculated as

faPAR = 1− bcPAR

incPAR
(3.3)
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We decided to use the more common term faPAR for what strictly speaking is
the fraction of intercepted PAR (fIPAR) (Gower et al., 1999). Nighttime values
(with incPAR < 100µmol m−1 s−1 and outliers were screened out. Outliers were
identified within a moving window as

X < Q1 − IQR ∪ X > Q3 + IQR (3.4)

where X are the data tested for outliers, Q1 and Q3 are the first and third quartiles,
and IQR is the interquartile range. The standard deviation in below canopy PAR
of the discarded observations was three times as high as in the full data set. The
filtered half-hourly faPAR was then multiplied with the quality checked half-hourly
incident PAR to obtain absorbed photosynthetically active radiation (aPAR). Light
use efficiency was subsequently calculated as the ratio of half-hourly GPP and
half-hourly aPAR. As the LUE in this study is calculated as µmol CO2

µmol photosynthetic photons ,
it is essentially a dimensionless quantity. We also tested whether it is more mean-
ingful to aggregate the half-hourly data and hence minimise noise. Thus we ap-
plied moving average filters to the half-hourly GPP, incPAR, and faPAR values,
with window sizes of 90, 150, and 210 minutes. LUE was calculated both as ratio
of averaged GPP and original half-hourly aPAR and as ratio of averaged GPP and
aPAR derived from averaged incPAR and faPAR. Light use efficiencies was also
calculated as a daily ratio. Daily averages of the original quality checked GPP,
incPAR, and bcPAR data were used to calculate first a daily average faPAR and
then aPAR and LUE.

To see whether we can obtain a better grip on the diurnal variations, we calculated
LUE as the slope of half-hourly GPP and aPAR. This variety of LUE was defined as
the slope of a linear function fitted to the half-hourly GPP and aPAR values of each
day. For 37 % of the days the goodness of fit (r2) was less than 0.6, thus fitting a
linear function to the half-hourly GPP and aPAR values of these days is somehow
arbitrary. As this occurred predominantly in low LUE conditions we did not reject
those slopes in order to avoid biasing the data. In case of negative slopes on some
summer days with low midday GPP observations the slope was set to 0.

3.2.2.2 Light Use Efficiency based on site data and MODIS faPAR

Collection 5 MODIS faPAR (Myneni et al., 2002) was downloaded separately for
the Terra and Aqua platform as ASCII subsets from the Oak Ridge National Lab-
oratory DAAC website (http://www.modis.ornl.gov/modis/index.cfm). In these data
sets each faPAR value is representative of a period of eight consecutive days. To
reduce gaps we merged the Terra and Aqua data sets. Preliminary tests with the
individual MODIS faPAR time series revealed that the MODIS product is prone to
underestimating faPAR for this site compared to bcPAR/incPAR based estimates,
especially in winter time. Thus, whenever two MODIS faPAR estimates were avail-
able for the same period, we kept the higher one for the combined data set. We
calculated another version of LUE through dividing average daily GPP values by
the product of the MODIS faPAR values and average daily incPAR.

http://www.modis.ornl.gov/modis/index.cfm
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3.2.2.3 Light Use Efficiency as obtained from the MODIS biome property
look-up table (BPLUT)

To assess the performance of vegetation index-based LUE proxies we also cal-
culated the LUE in the way it is operationally used in the MODIS GPP algorithm
(Heinsch et al., 2003). In this approach, a biome-specific maximum light use effi-
ciency is reduced by a vapour pressure deficit scalar and a minimum temperature
scalar (c.f. section 4.1). These attenuation scalars are calculated from daily VPD
and Tmin based on linear ramp functions, the parameters of which are contained
in the biome property look-up table (BPLUT). We used site measurements instead
of the 1◦ by 1.25◦ NASA Data Assimilation Office (DAO) data routinely fed into the
MODIS GPP algorithm to exclude mismatches between DAO and site meteorology
as a source of error.

3.2.3 Remote sensing based estimates of light use efficiency

3.2.3.1 Acquisition and atmospheric correction of MODIS data

The processing of MODIS data for this study is based on the procedure described
by Drolet et al. (2005). The pre-processing of the MODIS data that is not specific
to this chapter is described in section 2.2.1.

To account for the variation in reflectance introduced by the way of processing, we
tested 4 different modes of atmospheric correction: With the 6S model (Vermote
et al., 1997) atmospheric correction was performed assuming uniform Lambertian
reflectance. Moreover, a dark object subtraction (DOS) approach has been taken
to correct the spectral data. We also included at-sensor-reflectances in the com-
parison, i.e. without any correction for atmospheric disturbance and geometric
effects.

From preliminary experiments (c.f. 2.2.2) we know that the effect of BRDF correc-
tion on PRI is small compared to the effect of atmospheric correction. However, the
impact of surface reflectance anisotropy on a MODIS-based PRI is difficult to as-
sess precisely. The standard MOD43 product only contains BRDF-parameters for
the "land bands", i.e. the spectral bands 1-7. The theoretical benefit resulting from
correcting anisotropy effects is eroded by the additional uncertainties caused by
unavailability of BRDF shape parameters from the same day, location, and spec-
tral bands as the radiance data. As considering BRDF effects is known to improve
the quality of NDVI (Bacour et al., 2006), we used 6S in the BRDF-correction mode
prior to the calculation of NDVI and EVI. The data set with no atmospheric correc-
tion applied was subject to the same constraints as for the 6S-approach to arrive
at the same number of samples.

In the DOS-case reflectance was calculated as

ρ =
π(Lsat − Lpath)

E0cos(Θz)Tz
(3.5)
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where Lsat is the at-satellite radiance, E0 is the exoatmospheric solar constant
(contained within MOD021km), and Θz is the solar zenith angle. Tz is the atmo-
spheric transmittance in the illumination direction, fixed at 1 in this case. The path
radiance is estimated separately for each spectral band as

Lpath = Lsat,min − 0.01(E0cos(Θz)Tz)/π (3.6)

The first step in retrieving Lpath consisted in selecting all acquisition times when
the pixel containing the tower is flagged as "confident clear", without cirrus clouds,
heavy aerosol or shadows, and where the sensor zenith angle was no more than
40◦. For scenes with flawless tower pixels the 25000 pixels with the smallest
Euclidean distance to the tower-pixel were examined for contamination by cloud
cover, shadows, aerosols or bad detectors. Lsat,min was then defined as the av-
erage of the 500 pixels with the lowest radiance among the good quality pixels
neighbouring the tower pixel. A more detailed description of dark object subtrac-
tion can be found in (Song et al., 2001).

The MODIS cloud mask does not allow the detection cloud cover or cloud shadows
with absolute certainty. To rule these distortions out we only analysed at acquisition
times where the diurnal curve of incident PAR (ground-based measurements) was
near-perfect (c.f. section 2.1.3). We refer to this approach whenever we talk about
cloud-free days in this study. The total screening left 439 acquisition times in case
of the 6S approach (and "no correction") and 1145 acquisition times in case of the
DOS approaches for further analysis. Due to increased cloud cover in winter the
majority of usable image acquisitions occurs during the growing season.

3.2.3.2 Preparation of vegetation indices

In studies using field- or airborne spectrometers with high spectral resolution the
PRI is defined as in equation 3.1. It is based on ρ531 (reflectance at 531 nm),
which is sensitive to the epoxidation state of xanthophyll cycle pigments, and ρ570
(reflectance at 570 nm), being largely unaffected by short-term stress (Gamon
et al., 1992).

MODIS-band 11 is centred at 531 nm (cf. Table 1.2). As the MODIS-sensor is not
equipped with a spectral band centred at 570 nm, we tested bands 1 (620-670 nm),
4 (545-565 nm), 12 (546-556 nm), 13 low gain (662-672 nm), and 14 low gain (673-
683 nm) as potential reference bands, in accordance with the proposition of Drolet
et al. (2005, 2008). To obtain only positive PRI-values that compare better with the
traditional vegetation indices, a sPRI was calculated (Rahman et al., 2004):

sPRI = (PRI + 1)/2 (3.7)

A modification of sPRI has been computed for each of the 5 reference bands and
each of the 3 modes of atmospheric correction. To compare the performance of
the PRI as a proxy of LUE against the capability of well known vegetation indices
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we calculated the normalised difference vegetation index (NDVI) (Tucker, 1979),

NDV I =
ρNIR − ρred
ρNIR + ρred

=
ρbd2 − ρbd1
ρbd2 + ρbd1

(3.8)

and the enhanced vegetation index (EVI) (Huete et al., 1997),

EV I = 2.5 · ρNIR − ρred
ρNIR + 6 · ρred − 7.5 · ρblue + 1

2.5 · ρbd2 − ρbd1
ρbd2 + 6 · ρbd1 − 7.5 · ρbd3 + 1

(3.9)

from reflectance data that were corrected for atmospheric and BRDF effects.

3.2.4 Modelling GPP

In the end, we would like to know which approach of estimating light use efficiency
gives the best results when modelling GPP with equation 3.2. The light use effi-
ciency term will be approximated by (a) the VI that correlates best with LUE and
(b) the LUE derived from the MODIS biome parameter look-up table and local
temperature and VPD measurements. For (a) we applied leave-one-out cross-
validation by fitting a linear model to all but one VI-LUE pairs. This model was
then used to calculate a LUE value from the left-over VI value. This LUE esti-
mate was then multiplied with the matching aPAR value: GPP = LUE·faPAR·PAR
= ( a·VI+b)·faPAR·PAR. The relative difference of this modelled GPP value to the
actually measured GPP was recorded. This procedure was repeated for every VI-
LUE pair. For (a) we run one batch with reference LUE calculated as daily slope
with only site data, for another batch we picked the LUE version with MODIS fa-
PAR. With this cross-validation approach we reduced the risk of overfitting to the
specific data available. We compared average values, mean absolute errors, and
root mean squared error (RMSE). We used the modelling efficiency measure (ME,
Janssen and Heuberger (1995)), which compares the relative improvement of the
chosen model over the benchmark situation ’average of observed values’:

ME = 1−
∑n

i=1(Oi −Mi)
2∑n

i=1(Oi − Ō)2
(3.10)

We had a closer look at dry (soil water content < 100 mm) and wet periods (soil
water content > 200 mm).

3.3 Results

3.3.1 Comparing LUEs at different time scales

Multiple good quality MODIS image acquisitions rarely occur on the same day for
the same location. Even if, any light use efficiency that could be estimated from
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optical satellite data would still be a snapshot. The acquisition time can theoret-
ically influence the ability to estimate daily LUE from satellite data. In summer
time, the diurnal curve of GPP often displays a depression at midday, or GPP sim-
ply declines during midday and afternoon (data not shown). To check the effect
of acquisition time on the estimation of daily LUE, we compared LUE calculated
as half-hourly ratio against LUE calculated as daily ratio for all cloud-free days of
2002-2005. The potential image acquisition times of the Aqua and Terra satellite
in the study area range from 10 a.m. to 2 p.m. For all half-hour time steps within
this interval the linear fit between daily and half-hourly LUE yielded a correlation
coefficient of at least 0.92 (p<0.001, example for 12:00 to 12:30 shown in Fig. 3.2).
The linear functions relating the half-hourly and the daily LUE in each time interval
are close to the 1:1 line (slope 0.86-0.97, intercept 0.0013-0.0023).
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Fig. 3.2: Comparison of half-hourly and daily light use efficiency (LUE) for 12:00 to 12:30
at cloud free days (i.e. potential satellite acquisition days). Equally good or better
relationships are observed for the other half-hour intervals between 10 a.m. and 2 p.m..
The linear function fitted to the observations is shown by the continuous line, the 1:1 line
is dashed.

The relative similarity of half-hourly and daily LUEs is also revealed on an an-
nual basis. While–naturally–some half-hourly LUEs exceed the daily LUE, the an-
nual means are comparable and display the same interannual variations (Fig. 3.3,
A). The 90th percentile of daily LUE ranges between 0.0261 (2002) and 0.0230
µmol CO2

µmol photons (2002); this difference is equivalent to 11% of the 2002 value. The 90th

percentiles of all years exceed the maximum LUE given in the MODIS BPLUT for
evergreen broadleaf forests (0.021 µmol CO2

µmol photons ). The LUE calculated according to
the MODIS GPP algorithm does about represent the average LUE in non-summer
months. However, during the summer months, a decline in LUE calculated from
site GPP and aPAR can be observed that is not captured by BPLUT-based LUE
(Fig. 3.3).
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●

LUE (BPLUT)
LUE (site)

 B

Fig. 3.3: (A) Annual means and standard deviation of half-hourly and daily light use
efficiency; LUE.max: maximum LUE for evergreen broadleaf forests according to MOD17
biome property look-up table (BPLUT) (B) BPLUT-approach does not capture LUE
dynamics of the site, similar pattern for all years

3.3.2 Strength of relationship between VIs and LUE, aPAR, and GPP

We then checked the correlation between 14 varieties of LUE and the vegetation
indices, i.e. the sPRI with 5 different reference wavelength and 3 modes of atmo-
spheric correction each, as well as the NDVI, and EVI. For each viewing-geometry
constrained subset of observations we made sure that all VIs were available simul-
taneously. Whether we look at the full data set or constrain to certain sun-sensor
geometries: the behaviour of LUE in the family of ratios at daily and sub-daily level
is very consistent. Therefore only one representative is displayed in Fig. 3.4 A-E.
In our study, the PRI with the broad reference band 1 yielded the best correlation
with ecosystem LUE (r up to 0.78). However, we only achieved such a good cor-
relation when constraining the dataset with respect to viewing geometry and when
we did not apply atmospheric correction. In the following we will detail the effects
of different constraints.

Looking at the whole dataset, only constrained as outlined in section 3.2.2 (Fig. 3.4
A, we find that the scaled PRI with the red reference bands (1, 13, 14) correlate
best with the ground based LUE estimates (r = 0.65, p<0.001 for LUE calculated
with MODIS faPAR, n = 156 samples). Choosing only observations made by ei-
ther Terra or Aqua does change neither the strength of the correlation nor the
slope of a linear function fitted to the LUE and PRI values (data not shown). The
best relationship between a "traditional vegetation index" and LUE is r ≤ 0.43, for
NDVI with atmospheric (Lambertian) correction (p<0.001). For all sPRIs analysed,
none of the atmospheric correction procedures tested does yield a significantly
better correlation with LUE compared to sPRI calculated from top-of-atmosphere
reflectances.

As a next step we only look at satellite data that are subject to backscatter condi-
tions, that is to say where sun and sensor have ≤ 10◦ difference in zenith angle
and ≤ 60◦ difference in azimuth angle. Because of these constraints and because
we made sure that we compared vegetation indices from exactly the same obser-
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Fig. 3.4: (A-E) Correlation between ground based light use efficiency estimates (LUE
with faPAR from MODIS data and from interception measurements, c.f. section 3.2.2) and
MODIS vegetation indices. (A) Sensor zenith angle (SZA) 0-40◦ (B) SZA 0-10◦ (C) SZA
10-20◦, (D) SZA 20-30◦, (E) SZA 30-40◦ (F) Correlation of aPAR and VI (G) Correlation of
GPP and VI (F-G) constraints as for B. Black circles indicate negative correlation. The
atmospheric correction modes are abbreviated with L (correction with 6S assuming
Lambertian conditions), B (correction with 6S considering BRDF effects), U
(uncorrected), and D (dark object subtraction).

vation times, only six samples remained. For these 6 days, correlation between the
remaining sPRI and LUE values does improve a lot (data not shown because of
sample size). sPRI with reference band 14 yields the best correlation with LUE (r
= 0.91, for LUE based on MODIS faPAR, followed by sPRI with reference band 13
and 1. For observations near backscatter direction atmospheric correction seems
to be necessary to obtain a good relationship between the different sPRIs and
LUE. Due to the small number of observations in this configuration we must be
careful not to attach too much importance to this result. Neither NDVI nor EVI
have a correlation with LUE to speak of.

Constraining the satellite data to sensor zenith angles (SZA) of ≤ 10◦) or 30-40◦

increases the correlation between LUE and all vegetation indices compared to the
complete data set (Fig. 3.4 B, E). The sPRI with reference bands 1, 13, and 14
perform similarly well regarding their correlation with LUE (r up to 0.79 for sPRI with
reference band 1 and LUE based on MODIS faPAR, no atmospheric correction, p
< 0.001). In the subsets with 10-20◦ and 20-30◦ SZA the correlation between
vegetation indices and LUE is comparable to the full data set, both in pattern and
magnitude. For the viewing angle restricted data sets atmospheric correction does
generally not improve the correlation. NDVI and PRI with reference band 1 at
near-nadir SZA are the only exceptions.
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On the whole, PRI without atmospheric correction correlates best with LUE. This
pattern shows up again when correlating the VIs with absorbed PAR. The uncor-
rected sPRIs show a strong relationship with aPAR, this time negative (example
for 0-10◦ SZA shown in Fig. 3.4 F). The correlation patterns of other LUE varia-
tions versus VIs do also correspond to the aPAR correlation patterns, albeit at a
lower magnitude and only after selecting for narrow SZA (not all data shown). We
observe no correlation between GPP and sPRI or the other VIs (Fig. 3.4 G). This
pattern is consistent regardless of the constraints applied to the data set.

3.3.3 Ability of sPRI to track LUE over time

The sPRI with reference band 1(as well as the two narrow red bands) and no at-
mospheric correction (SZA 0-10◦) does well in tracking the seasonal course of light
use efficiency (Fig. 3.5 A). Especially, it picks up the decline in LUE during drought
periods in the summer (Fig. 3.5 C). The best performing sPRI (reference band
1, no atmospheric correction, SZA 0-10◦) yields a somewhat higher correlation
with LUE than the best performing traditional vegetation index (NDVI, reflectances
corrected with 6S assuming Lambertian behaviour, SZA 0-10◦), that is r = 0.78,
p<0.001 compared to r = 0.70, p<0.001 (Fig. 3.4). This relationship deteriorates
when all available data in this range of SZA are considered, not only those where
all vegetation indices are available simultaneously (Fig. 3.5). EVI is a far worse
predictors of LUE. The PRI (and LUE) is minimal during summer droughts. Since
the amount of incident PAR is maximum in summer, aPAR and PRI are inversely
correlated (r = -0.86, p <0.001) for sPRI with reference band 1, no atmospheric
correction, SZA 0-10◦ and daily aPAR; c.f. Fig. 3.4). All of the potential refer-
ence bands tested in this study are clearly influenced by the same forcing and
show a distinct seasonal cycle. The changes within the ecosystem add to the
effects caused for instance by viewing geometry and absorbed PAR and can be
visualised as normalised ratios. As band 1 integrates over the wavelength of band
13 and 14 it is not surprising that they show the same temporal variation. The
gaps in summertime result from saturation of the narrow red bands. These bands
were designed with a higher sensitivity to monitor dark oceanic surfaces and are
thus more likely to saturate over relatively bright terrestrial targets, especially when
vegetation cover is not dense.

3.3.4 Modelling GPP

The VI selected as LUE-proxy in this analysis is the sPRI with reference band 1 and
no atmospheric correction performed (constrained to near nadir viewing angles).
PRI with reference band 1 was chosen over the PRIs with reference bands 13 and
14 because band 1 does rarely saturate and thus yields a higher data coverage. As
shown in section 3.3.3, the PRIs with red reference bands otherwise behave very
similar. Setting up a model with this sPRI and a site-data-only LUE yields a relative
difference between modelled and observed GPP of 40.2% (median, n=49, c.f. Fig.
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Fig. 3.5: (A) Timeseries of LUE, best-performing PRI (reference band 1, no radiance
correction), and best-performing other vegetation index (NDVI with BRDF correction) (B)
Reflectances used for PRI calculation (no atmospheric correction) (A+B) Only
observations with near-nadir viewing angles are shown (C) Cumulative water deficit as
water stress indicator and daily aPAR averages (D) Sun zenith and azimuth angles during
time of image acquisition (A+C) A = Aqua, T = Terra

3.6, Table 3.1). When the GPP estimation is based on LUE with MODIS faPAR,
the difference to the observed GPP is 50.6% (median, n=44). If GPP is modelled
with the MODIS algorithm, the difference to the observed GPP is as large as 151%
(median). To achieve comparability, we chose the same observation times as in the
first set-up (n=49). With the look-up table approach GPP is severely overestimated
during all satellite data acquisition times (near nadir viewing angles) and even more
so during times of water stress (Table 3.2). In contrast, the discrepancy between
observed GPP values and PRI-based GPP estimates during dry periods is not
much different from periods with high water availability.
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Tab. 3.1: Comparison of GPP-models (c.f. section 3.3.4). The LUE for the two leftmost
models was estimated from sPRI (reference band 1, no atmospheric correction, sensor
zenith angle 0-10◦), based on a regression of the other n-1 sPRI values against LUE
estimates. In the model on the right, LUE is calculated from MODIS biome property
look-up table (BPLUT) parameters and site meteorological data. Numbers are
dimensionless or in µmolCO2 m−2s−1 (∗).

LUE from
site data only site GPP & MODIS faPAR BPLUT

number of obs. 49 45 44
avg. modelled GPP∗ 2.126 3.860 8.747
avg. observed GPP∗ 3.981 4.051 4.047
Mean absolute error∗ 2.088 1.390 4.752
RMSE∗ 2.3208 3.389 27.345
Modelling efficiency -5.172·1032 -1.034·1030 -3.470·1032

Tab. 3.2: Average difference between observed and modelled GPP (cf. section 3.3.4,
Table 3.1) in dry periods, well-watered periods, and the whole time series with standard
deviation (in µmol CO2 m−2 s−1). In parentheses: number of observations.

LUE from: ∆GPPdry ∆GPPwet ∆GPPall
site data only 1.602±1.239 (14) 1.107±1.995 (11) 1.855±1.955 (49)
site GPP & MODIS faPAR -0.120±1.276 (14) -0.142 ±1.366 (11) 0.191±1.852 (45)
BPLUT -6.230±1.443 (14) -2.598±2.481 (10) -4.596±2.396 (44)
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Fig. 3.6: Relative difference (%) between observed GPP and GPP derived from n light
use efficiency models. The LUE for the two leftmost models was estimated from sPRI
(reference band 1, no atmospheric correction, SZA 0-10◦), based on a regression of the
other n-1 sPRI values against LUE estimates. In the right-hand model, LUE is calculated
from MODIS biome property look-up table (BPLUT) parameters and site meteorological
data.
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3.4 Discussion

3.4.1 Comparing LUEs at different time scales

We demonstrate specifically for a water-limited site that midday LUE on cloud-free
days is a good proxy for daily LUE (Fig. 3.2). Other experimental evidence sug-
gests that this relationship might be generally applicable. Sims et al. (2005) report
a good relationship between midday and daily LUE on clear days (r = 0.85) for
pooled data from a wide range of vegetation types. This was indirectly confirmed
for a boreal deciduous forest where Drolet et al. (2005) found low variability in
LUE on days useful for MODIS image acquisition. In this case, faPAR for LUE
calculation was derived from tower measurements of NDVI. For pooled data from
a Canadian boreal forest with different plant functional types and levels of distur-
bance, Drolet et al. (2008) found a strong relationship between midday and daily
LUE (r = 0.96) on clear days (using MODIS faPAR). That we do not find strong
differences in the PRI-LUE relationship for different LUE aggregation levels does
fit in with this general picture.

The highest 90th percentile of daily LUE per year within the study period amounted
to 0.0261 (2002). This compares well with the maximum LUE in other semiarid
ecosystems, for instance Sims et al. (2006) reported a maximum daily LUE of 0.02
for a relatively sparse Californian chaparral ecosystem. The site specific maxi-
mum LUE is subject to considerable interannual variability (Fig. 3.3). Within the 4
years analysed, the 90th percentile varied by 11%. This indicates that MOD17-like
models might improve their performance if parameters were optimised on an an-
nual basis. The operational MOD17 maximum LUE for evergreen broadleaf forests
was too low for the Puéchabon forest in the study period. Moreover, the MOD17
biome property look-up table (BPLUT) approach did not simulate the summer de-
pression in LUE, although we used accurate on-site measurements of temperature
and VPD. In principle, an optimisation of the MOD17 BPLUT parameters could re-
duce the discrepancy between modelled and actual LUE. In any case, the error In
MOD17 GPP is likely to increase when the constraining environmental factors are
extracted from global meteorology datasets. Also, for this particular site the com-
plete water balance needs to be considered to model GPP accurately (unpublished
results by Markus Reichstein). Considering soil water content might theoretically
improve the situation but retrieving (deep) soil moisture on large spatial scales is
not feasible. These results justify the search for alternative LUE estimates.

3.4.2 Strength of relationship between VIs and LUE, aPAR, and GPP

In this study, the red MODIS spectral bands (620-670 nm, 662-672 nm, 673-683
nm) turned out to be the most suitable reference bands for PRI (Fig. 3.4,3.4).
The PRI with red reference bands was shown to be clearly more related to LUE
than NDVI or EVI. This behaviour is as expected, it has been shown before that
using NDVI results in an overestimation of productivity, especially in water limited
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sites Running and Nemani (1988). When sampling the total set of satellite data
for acquisitions within a narrow range of viewing angles, we found stronger rela-
tionships between all versions of PRI and LUE compared to the complete data set.
This is especially true for near-nadir viewing angles and viewing zenith angles of
30-40◦. Barton and North (2001) showed in a simulation study that the influence
of soil background reflectance on PRI is significant for canopies with a leaf area
index (LAI) below 3. The relatively sparse vegetation cover in the study area (leaf
area index (LAI) just below 3) might thus give rise to a sensitivity of the PRI-LUE
relationship to differences in viewing angle. We also need to keep in mind that the
PRI, since it is observed from above, represents at best top-of-canopy conditions,
not an average over the whole canopy. Some scatter in the LUE-PRI relationship
is probably due to this fundamental difference between any optical remote sens-
ing data and the eddy covariance based GPP estimates involved in the evaluation,
which integrate over the whole canopy.

For a boreal deciduous forest Drolet et al. (2005) found a strong linear positive rela-
tionship between LUE and PRI with reference band 13 calculated from backscatter
top-of-atmosphere reflectance(r = 0.87). A weaker relationship was found when
using reference band 12 (r = 0.73). They found no significant correlation for the
reference bands 1 and 4. Drolet et al. (2008) estimated ecosystem LUE for sev-
eral Canadian boreal forest sites with different plant functional types and degrees
of disturbance with MODIS bands 10, 12, 13, and 14 (488 nm, 551 nm, 667 nm,
and 678 nm) as reference bands. Reference band 14 yielded the best correlation
with LUE (r2 = 0.70, pooled data). However, in that study no significant correlation
was observed for the individual sites. In our study, PRIs formed with the narrow
red bands 13 and 14 have about the same relationship to LUE as a PRI with the
broader red band 1 (c.f. Fig. 3.4). Red might be generally useful as a reference
band for MODIS based PRI.

Garbulsky et al. (2008) estimated LUE of an Italian Quercus ilex forest (leaf area
index (LAI) = 3.5) with a MODIS-based PRI. Using at-sensor-radiance and band
12 for reference they found a good correlation (r = 0.78) for all cloud-free image
acquisition days. The better performance of reference band 12 and the lower sen-
sitivity to viewing geometry compared to the Puéchabon site might be due to the
higher leaf area index (LAI) (3.5 compared to 2.8±0.4), and maybe also due to
generally better water availability (Damm et al., 2002). The performance of the red
bands at this closed-canopy stand was not published. For using a satellite-derived
PRI at larger spatial scales it will be necessary to find out the optimal reference
band under different conditions. If no universally applicable reference band can be
identified, we would need to establish stratification rules.

In this study using top-of-atmosphere reflectance data for PRI calculation yielded
the highest correlation with LUE for most viewing geometries. In the backscatter
constellation, correction with 6S was better, although based on few data. Drolet
et al. (2005) reported a similar phenomena. This suggests that the estimates of
atmospheric optical thickness provided as MODIS product and/or atmospheric cor-
rection with 6S add uncertainty to the small PRI signal. The sampling frequency
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and the range of viewing angles used to produce the MODIS atmospheric optical
thickness product might be a limiting factor. Integrating data from other satellite
missions might mitigate this problem. The simulation study performed by Barton
and North (2001) suggests that the index is robust to variation in aerosol as the
top-of-atmosphere PRI followed the ground PRI over a range of optical thickness.
Their explanation is that the (original) bands are close in wavelength and so unlike
Rayleigh scattering the aerosol effects are similar at both 531 and 570 nm. This
reasoning is not so convincing when using a red reference band. Currently, we do
not have an explanation why using uncorrected red bands gives nevertheless the
best results.

3.4.3 Ability of sPRI to track LUE over time

The MODIS-based PRI with one of the reference bands 1, 13, or 14 and no ra-
diance correction applied is able to track the seasonal course of LUE if the ob-
servations are constrained to narrow ranges of viewing angles. It is the first time
this has been demonstrated for a severely water limited Mediterranean site. The
constraints in viewing geometry probably limit the effect of anisotropy in surface re-
flectance. The remaining temporal variations in the PRI signal in the restricted data
sets are better linked with variations in ecosystem LUE. It is likely that not only the
xanthophyll-cycle pigment interconversions give raise to the changes in PRI but
also seasonal changes in the concentration of xanthophyll cycle pigments. Xan-
thophyll levels, carotenoid concentrations in general, and chlorophyll levels relate
to seasonal changes in vegetation productivity; the PRI signal has been shown to
match these variations (Sims and Gamon, 2002; Stylinski et al., 2002; Sims et al.,
2006). Filella et al. (2004) state that xanthophyll and carotenoid levels change with
environmental conditions and thus also are indicators of photosynthetic downreg-
ulation under stress.

The NDVI did not track the decline in LUE as well as the PRI with reference band
1 (Fig. 3.5). Sims et al. (2006) gave one plausible explanation for this: compared
to PRI the NDVI seasonal pattern is more sensitive to solar elevation angle effects.
The relatively good correspondence between NDVI and LUE in the summer of
2005 compared to previous summers probably results from a caterpillar attack
(Allard et al., 2008).

Gamon et al. (1992) tried different reference wavelength for sunflower canopies,
550 nm did not work well with the water stress experiments. Leaves of sclerophylly
are less prone to wilting, hence the fraction of soil seen from sensor does not vary
(due to wilting, but surely due to changes in viewing angle).

3.4.4 Modelling GPP

In this study, GPP models relying on PRI as an LUE proxy yielded considerably
more agreement with observations than the MODIS GPP algorithm, especially
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during dry periods. Both approaches were tested with site meteorological data
(including incPAR) and MODIS faPAR, hence the differences in performance are
not due to the quality of input data. Further research should address the perfor-
mance of PRI based models with a more universal parameterisation (e.g. for all
Mediterranean evergreen needleleaf forests).

Data from optical sensors such as MODIS are often cloud contaminated, temporal
aggregations are used to increase the spatial coverage. Sims et al. (2005) docu-
mented that the inclusion of cloudy days leads to a large variation of LUE within
the aggregation period and thus disturbs the relationship between midday LUE
and LUE of the aggregation period. They suggest to estimate midday LUE from
satellite data and to compute midday gross carbon fluxes from that. Then rather
robust relationships between midday gross carbon flux and eight-day fluxes should
be used to extrapolate to longer time periods.

3.4.5 General considerations

Overall, the Puéchabon Quercus ilex forest seems to be a suitable test case to
study the performance of satellite based PRI in drought-prone areas. For this
evergreen forest the PRI signal is not dominated by large seasonal variations in
leaf area through senescence or strong wilting. Other semiarid ecosystems, for
instance those with brevi-deciduous leaves and sparser canopy structure, can be
less suitable for PRI studies (Filella et al., 2004; Sims et al., 2006). But also for
the sclerophylly site studied here we can not exclude that the relationship between
PRI and LUE in years with excessive drought might differ from years with normal
droughts. Sims et al. (2006) observed such changes for a Californian chaparral
ecosystem.

3.5 Conclusions

We found that MODIS PRI seems to be a useful estimator of ecosystem LUE,
despite the influence of soil and other photosynthetically inactive material on the
reflectance signal. This statement is valid during the whole growing season and
also times of severe water deficiency. The light use efficiency at times of satellite
data acquisition is close to the daily average of light use efficiency, thus PRI can be
used to estimate daily LUE. The PRI with either of the three tested red reference
bands is correlated best with on-site LUE. Given that the narrow red bands 13 and
14 are prone to saturation in summer and thus provide less useful observations,
band 1 seems to be the best reference band for the evergreen oak forest studied
here. Since the choice of reference band matters, we recommend to perform an
independent careful screening for each new study area, or to look for a universally
applicable reference band for MODIS-based PRI. NDVI and EVI were compara-
tively poor proxies of LUE. The relationship between PRI and LUE improves when
the analysis is restricted to small ranges of viewing angles. Near nadir viewing
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angles yield the best results. In the end, this study also demonstrates that GPP
models relying on PRI as a LUE proxy correspond considerably better with obser-
vations than the MODIS GPP algorithm, especially when water is scarce.
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Chapter summary

Several studies sustained the possibility that a photochemical reflectance index
(PRI) directly obtained from satellite data can be used as a proxy for ecosystem
light use efficiency (LUE) in diagnostic models of gross primary productivity. This
modelling approach would avoid the complications that are involved in using me-
teorological data as constraints for a fixed maximum LUE. However, no unifying
model predicting LUE across climate zones and time based on MODIS PRI has
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been published to date. In this study, we evaluate the effectiveness with which
MODIS-based PRI can be used to estimate ecosystem light use efficiency at study
sites of different plant functional types and vegetation densities. Our objective is
to examine if known limitations such as dependence on viewing and illumination
geometry can be overcome and a single PRI-based model of LUE (i.e. based on
the same reference band) can be applied under a wide range of conditions. Fur-
thermore, we were interested in the effect of using different fraction of absorbed
photosynthetically active radiation (faPAR) products on the in-situ LUE used as
ground truth and thus on the whole evaluation exercise. We found that estimating
LUE at site-level based on PRI reduces uncertainty compared to the approaches
relying on a maximum LUE reduced by minimum temperature and vapour pres-
sure deficit. Despite the advantages of using PRI to estimate LUE at site-level, we
could not establish an universally applicable light use efficiency model based on
MODIS PRI. Models that were optimised for a pool of data from several sites did
not perform well.

4.1 Introduction

Sound estimates of gross primary productivity (GPP) are essential for an accurate
quantification of the global carbon cycle and an understanding of its variability
(Schulze, 2006). Many diagnostic models of primary productivity are based on a
light use efficiency approach (Running et al., 2000; Yuan et al., 2007; Beer et al.,
2010, e.g.).

All light use efficiency models represent photosynthetic assimilation of vegetation
as a function of the amount of photosynthetically active radiation absorbed by
plants (aPAR) (Monteith, 1972; Running et al., 2000). In these models, all envi-
ronmental and biophysical constraints on the conversion of photo energy to plant
biomass are aggregated in the term light use efficiency (LUE). GPP is thus calcu-
lated as:

GPP = LUE × aPAR (4.1)

aPAR = faPAR × PAR (4.2)

where faPAR is the fraction of absorbed photosynthetically active radiation . The
simplicity of this approach, with little need for ancillary data, makes it possible to
base these models on remote sensing products and meteorological fields (Hilker
et al., 2008b; McCallum et al., 2009). Thus, an important prerequisite for applica-
tion on the global scale is fulfilled.

It should be noted, although the definition of aPAR is clear, faPAR and incident
PAR derived from different sources and can differ substantially (e.g. McCallum
et al., 2010).

LUE is influenced by many factors and thus varies in space and time. Factors lim-
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iting LUE include plant water availability and atmospheric water demand as well as
temperature and plant nutrition. LUE is usually modelled by constraining a certain
maximum LUE according to a set of environmental conditions (e.g. Running et al.,
2000; Yuan et al., 2007; Horn and Schulz, 2010). The determinants of LUE and on
which time-scales they act are only partially resolved. Among the main difficulties
on the daily to annual time-scales are finding a suitable surrogate for ecosystem
water limitation (Garbulsky et al., 2010) and the accuracy of the available meteo-
rological data (Heinsch et al., 2006).

It is thus attractive to derive LUE directly from just one kind of satellite data, with-
out relying on estimates of different meteorological variables. Two types of re-
motely sensed data are candidates for this: fluorescence and the photochemical
reflectance index (PRI).

While studies using airborne fluorescence measurements had promising results,
the signal-to-noise ratio needs to be improved to be useful for satellite-based ob-
servations; efforts are ongoing (Meroni et al., 2009b). The PRI combines re-
flectance at 531 nm (ρ531) with a reference wavelength insensitive to short-term
changes in light energy conversion efficiency (ρref ) and normalises it (Gamon et al.,
1992; Peñuelas et al., 1995):

PRI = (ρ531 − ρref) / (ρ531 + ρref) (4.3)

The original PRI formulation by Gamon et al. (1992) used 550 nm as the primary
reference band since, according to a study on sunflowers, it seemed least affected
by changes in green canopy structure. It also had 531 nm and reference wave-
length swapped compared to recent use (c.f. Eq. 4.3). Later studies noted that
for leaf-level reflectance, 570 nm appears to normalise best for confounding ef-
fects like pigment content and chloroplast movement (Gamon et al., 1993a, 1995).
Thus, 570 nm became the most widely used PRI reference band. Recently, Mid-
dleton et al. (2009) showed for a douglas fir forest that reference bands in the
ranges 540–574 nm, 480–515 nm and 670–680 nm have a high correlation with fo-
liage LUE. An overview on protocols used for PRI studies can be found in a review
by Garbulsky et al. (2011).

PRI can be a useful proxy for LUE because changes in reflectance at 531 nm are a
side effect of mechanisms that protect the photosynthetic system in the leaves from
excess light by down-regulating carbon assimilation (for an extensive summary,
see Middleton et al., 2009; Coops et al., 2010). PRI also correlates with the total
content of carotenoid pigments (Stylinski et al., 2002), this needs to be considered
when looking at seasonal changes in PRI.

At site level, PRI has been shown to give good estimates of LUE when derived from
field spectrometers (Gamon et al., 1992), but also from airborne sensors (Nichol
et al., 2000, 2002; Rahman et al., 2001). Recently, the MODIS sensor on TERRA
and AQUA has also been used successfully at ecosystem scale (Rahman et al.,
2004; Drolet et al., 2005, 2008; Garbulsky et al., 2008; Goerner et al., 2009; Xie
et al., 2009). MODIS provides a useful temporal resolution, a band around 531 nm,
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but not the reference band at 570 nm. Thus, the MODIS PRI has been based on
several alternative reference bands. However, the PRI has some well known limita-
tions (Grace et al., 2007). Multiple studies showed that the PRI signal is affected by
the viewing and illumination geometry, including the fraction of sunlit and shaded
leaves seen by the sensor, canopy structure, and background reflectance (Barton
and North, 2001; Nichol et al., 2002; Suárez et al., 2008; Sims and Gamon, 2002;
Louis et al., 2005; Drolet et al., 2008; Hilker et al., 2009; Middleton et al., 2009).

These difficulties, along with data access problems, might have hindered the eval-
uation of an LUE model based on MODIS PRI across space and time. So far it is
unclear if one model can be applied at multiple sites. Also, the question remains
whether one MODIS PRI reference band can be recommended for all sites, or if dif-
ferent reference bands have to be used depending on for example plant functional
type and vegetation density.

Despite the fluctuations in illumination geometry, dimension of the surface area
sensed by each instantaneous field-of-view and background reflectance at every
site, the site level models based on MODIS PRI published so far yielded good
agreement with observed LUE. That considerable potential exists for mapping
LUE with a common model has also been shown by Drolet et al. (2008), who
found a unifying model for eight sites in central Saskatchewan. These boreal sites
are close to each other (within the confines of one satellite scene), hence they can
be simultaneously monitored instead of by comparing data from different image
acquisitions. The viewing geometry and atmospheric disturbance of the satellite
signal is therefore similar. Consequentially, the next step is to evaluate PRI based
models across sites and satellite scenes.

In this study, we evaluate the effectiveness with which MODIS-based PRI can be
used to estimate ecosystem light use efficiency (LUE) at study sites of four distinct
plant functional types and different vegetation densities. Our objective is to find out
if the limitations can be overcome and a single PRI-based model of LUE (i.e. based
on the same reference band) can be applied under a wide range of conditions.
Furthermore, we were interested in how different faPAR products affect the in-situ
LUE estimates which are used as ground truth.

4.2 Data and methods

4.2.1 Selection of study sites

To be able to properly evaluate the PRI-based LUE estimates, we conducted this
study at a selection of sites from the FLUXNET LaThuile data set that provides the
necessary gross primary productivity and site meteorology data (www.fluxdata.
org).

Here, we focus on non-boreal forest/savanna sites with water stress during part of
the year. Some sites have to be excluded because of too few valid PRI data. Such

www.fluxdata.org
www.fluxdata.org
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Tab. 4.1: Overview of the sites used in this study.

Site
code

Site name Lat, Lon
(flux tower)

Data
used

PFT (dominant
species)

LAI References

ZA-Kru Skukuza,
Kruger
National Park
(South Africa)

−25.0197,
31.4969

2001–
2003

Savanna
(Combretum
apiculatum,
Sclerocarya birrea,
Acacia nigrescens)

1 (area avg.
trees, max.), 3
(within tree
canopy, max.),
1 (herbaceous
layer, avg.)

Scholes et al.
(2001);
Kutsch et al.
(2008)

FR-
Pue

Puechabon
(France)

43.7414,
3.59583

2000–
2006

evergreen
broad-leaved forest
(Quercus ilex L)

2.8±0.4
Allard et al.
(2008)

IT-Cpz Castelporziano
(Italy)

41.7052,
12.3761

2000–
2006

evergreen
broad-leaved forest
(Quercus ilex L.)

3.2–3.8
Tirone et al.
(2003)

US-
MMS

Morgan
Monroe State
Forest (US)

39.3231,
−86.4131

2000–
2005

deciduous
broad-leaved forest
(sugar maple, tulip
poplar, sassafras,
white and red oak)

4.8
Schmid et al.
(2000)

US-
Me2

Metolius –
intermediate
aged
ponderosa
pine (US)

44.4523,
−121.557

2003–
2005

evergreen
needle-leaved forest
(Pinus ponderosa)

2.8
(overstorey),
0.2
(understorey)

Thomas et al.
(2009)

data scarcity can be caused by frequent cloud cover or saturation of the satellite
signal at sparsely vegetated sites. The largest limitation on the number of relevant
sites is the size of the targeted ecosystem surrounding the flux tower. It must be
large enough to contain the footprint of a ≥1×1 km MODIS pixel so that the flux
tower footprint is representative of the remotely sensed footprint.

We thus conducted our analysis on 5 sites: two dry-summer subtropical ever-
green broad-leaved forests, a site with vegetation typical for tropical savanna,
a humid-subtropical deciduous forest and a dry-summer subtropical evergreen
needle-leaved forest (see Fig. 4.1). A sixth site (Mitra) fulfilled the homogeneity
criteria mentioned above but had to be discarded because to few satellite data
were available, a consequence of frequent sensor saturation due the sparseness
of vegetation. All years for which eddy covariance and MODIS data are available
simultaneously were analysed (Table 4.1). Castelporziano is a borderline case re-
garding the extension of the target ecosystem. For this site, we discarded satellite
scenes in which the pixel containing the flux tower is partially made of non-forest.

4.2.2 In-situ LUE

We define LUE as the effectiveness with which an ecosystem uses absorbed pho-
tosynthetically active radiation (aPAR) to produce photosynthates (recorded as
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too many satellite observations 
saturated → not used

Fig. 4.1: Map of non-boreal, drought-influenced sites from the FLUXNET La Thuille
dataset, where the 1x1 km MODIS pixel including the tower is homogeneous.

gross primary productivity, GPP):

LUE =
GPP

faPAR × PAR
(4.4)

We used daily and half-hourly GPP data derived from eddy covariance measure-
ments, in-situ PAR measurements from the Fluxnet LaThuile data base, and dif-
ferent satellite based faPAR data sets. The eddy covariance data were processed
using the standardised methodology described in Papale et al. (2006); Reichstein
et al. (2005). We calculated aPAR as the product of available photosynthetically
active radiation (PAR, here in the form of average daylight photosynthetic photon
flux density—µmol m−2 s−1) and the fraction of PAR that is actually absorbed by
the vegetation (faPAR).

Since representative in-situ faPAR measurements are scarce, and considering
potential application of the PRI model to a larger area, we used satellite based
faPAR data to calculate aPAR. Readymade faPAR products are known to differ
from each other (McCallum et al., 2010). To test the impact of product choice
on the evaluation of the PRI-models we used three different faPAR sets: the
MODIS collection 5 MOD15A2 and MYD15A2 products (https://lpdaac.usgs.
gov/lpdaac/products/modis_products_table/leaf_area_index_fraction_
of_photosynthetically_active_radiation/8_day_l4_global_1km/mod15a2)
(2000–2006, 8-days-composite), the SeaWiFS-based faPAR of the Joint Research
Centre (http://fapar.jrc.ec.europa.eu) (2000–2006, although much of the
2006 data were discarded because of poor quality flags, 10-days-composite)
and the SPOT-Vegetation based Cyclopes faPAR product (Baret et al., 2007)
(only available for 2000–2003, 10-days-composite). The faPAR data were quality
checked and linearly interpolated to daily time steps, except for periods where
no good data were recorded for longer than 19 days (equal to 1 missing value in

https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/leaf_area_index_fraction_of_photosynthetically_active_radiation/8_day_l4_global_1km/mod15a2
https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/leaf_area_index_fraction_of_photosynthetically_active_radiation/8_day_l4_global_1km/mod15a2
https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/leaf_area_index_fraction_of_photosynthetically_active_radiation/8_day_l4_global_1km/mod15a2
http://fapar.jrc.ec.europa.eu
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the aggregated SeaWiFS and Cyclopes products) or 23 days (equal to 2 missing
values in the aggregates MODIS product). The light use efficiency calculated with
these faPAR data is denoted as LUEMODIS, LUESeaWiFS and LUECyclopes. For the
US-Me2 site, no valid aPAR is contained in the Cyclopes data set throughout the
study period.

4.2.3 Modelling LUE from MODIS based PRI

4.2.3.1 Acquisition and processing of MODIS reflectance data

For the study on multiple sites the pre-processing described in section 2.2.1 has
been slightly changed. Instead of downloading the MOD35 cloud product the infor-
mation needed for an initial cloud cover screening was taken from the MOD/MYD04
aerosol product.

Light reaching a satellite sensor after traveling trough the atmosphere is inevitably
affected by scattering and absorption. In addition, natural surfaces reflect light
differently subject to the viewing geometry. Ideally, data recorded by a satellite
sensor should be corrected for these wavelength-dependent effects to make the
reflectances computed from these records comparable. Albeit, from the pilot study
(see chapter 3, Goerner et al., 2009) and preliminary experiments we know that
correcting MODIS reflectances with bidirectional reflectance distribution function
(BRDF) parameters from existing data bases either has no effect on the PRI signal
(when using POLDER/PARASOL based parameters (Bacour and Bréon, 2005),
see Fig. 2.2) or only seems to increase noise in the PRI signal (when using the
MODIS MOD43 product, see Fig. 2.3). Additional doubt about the usefulness of
correcting reflectance data for this study using ready made products is caused
by the unavailability of a BRDF model and atmospheric parameters at the exact
acquisition time and spatial resolution of the radiance data and some of the spec-
tral bands listed in Table 1.2. Because the need for synchronous estimates of
atmospheric parameters flagged as high quality also reduces the number of avail-
able observations, we chose not to correct specifically for atmospheric or surface
anisotropy effects. To some degree, a correction is inherent in a ratio made of
reflectances that are not too far apart in the visible part of the solar spectrum.

The MODIS cloud mask does not allow the detection of cloud cover or cloud shad-
ows with absolute certainty. To rule out cloudiness, we visually checked for each
day if the daily course of incident PAR (measured in-situ as Photosynthetic Photon
Flux Density on half-hourly basis) follows an ideal curve. Acquisition dates at which
the measured PAR at the flux towers notably differs from the PAR pattern during
cloud free days at the same time of year were excluded from further analysis (see
Fig. 2.1 for example).
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Tab. 4.2: Overview of abbreviations used for “in-situ” light use efficiency and for LUE
modelled from vegetation indices (The models denoted with * were established for each
site (for all MODIS viewing angles and also specifically for viewing angles <10◦) as well
as for all evergreen sites combined and the two evergreen oak sites combined.)

Abbreviation Explanation

LUE used for evaluation

LUEMODIS light use efficiency calculated from site GPP, site PAR, and
MODIS faPAR

LUESeaWiFS light use efficiency calculated from site GPP, site PAR, and Joint
Research Center (JRC) SeaWiFS faPAR

LUECyclopes light use efficiency calculated from site GPP, site PAR, and
Cyclopes faPAR

LUE modelled from vegetation indices, general scheme*

LUEPRIX, Y
LUE modelled from regression between PRIX (i.e. with reference
band X) and LUEY

LUE modelled from vegetation indices, example

LUEPRI1, SeaWiFS LUE modelled from regression between PRI1 and LUESeaWiFS

LUEPRI LUE modelled from regression between PRI and observed LUE
(summary term for multiple models)

LUENDVI, MODIS LUE modelled from regression between NDVI and LUEMODIS

LUE calculated using look-up table and site meteorology

LUEMOD17 LUE calculated from biome specific MOD17 parameters and site
Tmin, VPD

LUEMOD17, opt LUE calculated from optimised biome specific MOD17
parameters and site Tmin, VPD

4.2.3.2 Preparation of vegetation indices

The standard configuration of the PRI (Eq. 4.3) has to be adapted to the spectral
bands available on MODIS (Drolet et al., 2005). The MODIS band 11 is centred
at 531 nm (cf. Table 1.2). As the MODIS-sensor is not equipped with a spectral
band centred at 570 nm, we tested bands 1 (620–670 nm), 4 (545–565 nm), and 12
(546–556 nm) as potential reference bands, in accordance with the proposition of
Drolet et al. (2005, 2008). A modification of PRI has been computed from top-
of-atmosphere reflectances for each of the 4 reference bands, denoted by PRI1,
PRI4. PRI10, and PRI12. We compared the performance of the PRI as a proxy of
LUE against what can be achieved with a well known broadband vegetation index.
The NDVI is known to respond to changes in biomass, but also chlorophyll content
as well as leaf water stress (Myneni et al., 1995; Treitz and Howarth, 1999). The
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index is hence useful to see which part of the variation in LUE can be explained
already by factors other then changes in the composition of xanthophyll pigments.
We calculated the NDVI (Tucker, 1979) from reflectance data:

NDVI =
ρNIR − ρred
ρNIR + ρred

=
ρbd2 − ρbd1
ρbd2 + ρbd1

(4.5)

4.2.3.3 Empirical PRI-based LUE models

Exponential relationships between observed LUE (LUEMODIS, LUESeaWiFS,
LUECyclopes) and PRI were explored with Bayesian hierarchical models. Models
were established separately for each version of PRI with data binned as follows:

• observations from all evergreen sites combined (i.e. FR-Pue, IT-Cpz, US-
Me2; separate models for NDVI, PRI1, PRI2. PRI10 and PRI12),

• observations from the two evergreen broad-leaved sites combined (i.e. FR-
Pue, IT-Cpz; also separate models for each vegetation index),

• one site specific model (for sensor viewing zenith angles ≤40◦), this results
in five models per vegetation index,

• separate bins for each range of viewing zenith angles (0–10◦, 10–20◦, 20–
30◦, 30–40◦) for each site, this results in 20 models per vegetation index.

Results for all those viewing angle bins are listed in the appendix. In the following
we will only show outcomes for the complete range of viewing angles and near-
nadir observations (0–10◦). The variance explained with models fitted to the other
bins lies in between those two. Table 4.2 gives an overview of how observed and
modelled light use efficiencies are denoted in this study.

4.2.4 LUE modelled from Tmin, VPD and plant functional type

For benchmarking the performance of vegetation index-based LUE proxies, we
also calculated the LUE in the way it is operationally used in the MODIS GPP al-
gorithm (Heinsch et al., 2003). In this approach, a biome-specific maximum light
use efficiency is reduced by a vapour pressure deficit scalar and a minimum tem-
perature scalar. These attenuation scalars are calculated from daily daylight VPD
and Tmin based on linear ramp functions, the parameters of which are contained
in the biome property look-up table (BPLUT).

LUEMOD17 = LUEmax, BLUT × f(VPD)× f (Tmin) (4.6)

We computed LUEMOD17 using the standard MOD17 parameters and
LUEMOD17.opt using parameters that have been optimised per site and year by
Enrico Tomelleri (see section on LUE models in the Supplement of Beer et al.,
2010).
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Fig. 4.2: Comparing daily and half-hourly light use efficiency (based on MODIS faPAR)
for all the cloud free times where MODIS PRI is available. The times of MODIS overpass
are given in the upper right corner of each

panel.

As this study is concerned with the site level, we use for both LUEMOD17 and
LUEMOD17.opt site measurements of VPD and Tmin from the Fluxnet LaThuile data
set instead of the 1◦ by 1.25◦ NASA Data Assimilation Office (DAO) data routinely
fed into the MODIS GPP algorithm.This way we also exclude uncertainties in the
DAO meteorology as an additional source of error.

4.3 Results

4.3.1 Are LUEs at times of MODIS overpass representative for the
whole day?

The MODIS sensors operate sun-synchronous, i.e. images are only acquired
within a certain window of local time (morning through midday on the Terra plat-
form, midday through afternoon on the Aqua satellite). As a first step in our anal-
ysis, we checked if the LUE at time of satellite overpass is representative for the
whole day. For the five sites in this study, half-hourly LUEMODIS during the time
of MODIS overpass can explain 65% (ZA-Kru) through 92% (FR-Pue) of the vari-
ability in daily LUEMODIS (c.f. Fig. 4.2). The slope of the regression line between
half-hourly and daily LUE for ZA-Kru has the strongest deviation from the 1:1 line.
Midday LUE at ZA-Kru is lower compared to other sites, while LUE in the late af-
ternoon and evening is on average higher than at the other sites (c.f. Fig. 4.4).
This might be due to differences in moisture limitation. The atmospheric mois-
ture demand increases during middays stronger than at the other study sites (c.f.
Fig. 4.3).

The relationship between halfhourly and daily LUE remains the same when using
other faPAR products. This justifies the use of PRI “snapshots” to estimate daily
LUE.
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Fig. 4.3: Average diurnal course of vapour pressure deficit (VPD) at the study sites.

4.3.2 Which MODIS-PRI version suits which setting?

In the next step of our analysis, we only use LUEMODIS to evaluate the different
modelled LUEs and to figure out which PRI configuration is most useful for which
site. Afterwards, the effect of using different faPAR products is scrutinised using
only the best suited PRI reference bands.

As an example for the relationship between PRI and LUE, Fig. 4.5 shows PRI1 and
LUEMODIS for all five studies sites as well as for the combined evergreen and oak
models (c.f. Sect. 4.2.3.3). We chose exponential functions to avoid negative mod-
elled LUEs. The divergences between the fitted models become already apparent
in this example. Taking into account the known uncertainties introduced by flux
data processing—in this case by comparing two different flux partitioning methods
does not change this pattern (see Fig. 4.6 & section 2.1.2).

For all LUE modelled site-specific based on PRI and NDVI, the correspondence
with LUEMODIS is better for near-nadir observations than for all observations to-
gether (c.f. R2s in Fig. 4.7).

LUEMODIS can be modelled properly based on PRI for the savanna site ZA-Kru
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Fig. 4.4: Average diurnal course of light use efficiency (LUE) at the study sites.

(R2 for near nadir observations [R2
nadir] = 0.78, R2 for all observations [R2

all] = 0.49)
and for the deciduous broad-leaved forest site US-MMS (R2

nadir = 0.71, R2
all = 0.46).

LUEMODIS can be reasonably well modelled for the two evergreen oak forest sites
(FR-Pue: R2

nadir = 0.57, R2
all = 0.45; IT-Cpz: R2

nadir = 0.43, R2
all = 0.44). The mod-

elling of LUEMODIS for the evergreen needle-leaved forest US-Me2 is less suc-
cessful using PRI (R2

nadir = 0.37, R2
all = 0.2, see also the table in the Supplement).

The optimal reference band for the PRI differs between sites. For three sites with
completely different characteristics, LUEPRI1, MODIS with a site-specific model ex-
plains most of the variability in daily LUEMODIS (ZA-Kru, FR-Pue, US-MMS). PRI4
is most suitable for modelling LUE at IT-Cpz. LUEPRI12, MODIS works best at the
US-Me2 site.

4.3.3 Can LUE estimation from MODIS-PRI be generalised?

Ideally, a model of light use efficiency would be parameterised once for all possible
cases, or for well defined categories, and could then be applied to other location
in the same range of environmental conditions. When applying the model that
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Fig. 4.6: Corresponds to Fig. 4.5. The error bars represent twice the mean difference in
LUE between partitioning based on nighttime or daytime data (c.f. section 2.1.2).

has been established for the pooled evergreen-site observations at site level, the
correspondence with observed LUE values is low (c.f. Figs. 4.5b, 4.7, 4.8) as it
can be expected for sites of different plant functional type and location. Even when
parameterising a model for the two evergreen broad-leaved forest sites with the
same dominant species, the explained variability is low.

4.3.4 How does LUE modelled from MODIS-PRI compare to other
LUE models?

Of course, estimating LUE from PRI would not be justified if the same or a better
accuracy can be achieved with models/data that are already operational.
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LUENDVI, MODIS resulted only for the two sites with high deciduousness in a slightly
better agreement with observed LUE: for near-nadir observations in ZA-Kru, and
when using all observations in US-MMS. The differences in R2 to the best LUEPRI

are only 0.03% and 0.2% (c.f. Fig. 4.7, Table in the Supplement).

For the sites we have studied, LUEMOD17 has in every setting much less agreement
with observations than LUEPRI. LUEMOD17, opt. performs much better, though not
superior to LUEPRI except at FR-Pue with MODIS viewing angles ranging from
0–40◦. The agreement between LUEMOD17.opt and the reference LUE increases
slightly (without changing any of the statements above) when using faPAR from
MODIS collection 4 instead of 5 to calculate LUEMOD17 because the MOD17 pa-
rameters have been optimised based on collection 4 data (not shown). Note that,
while benchmarking with LUEMOD17 and LUEMOD17.opt provides an additional point
of reference, the main evaluation is performed with in-situ LUE.

4.3.5 Which influence does the choice of an faPAR product have on
PRI evaluation?

For the deciduous forest site (US-Me2), the choice of faPAR product does not
influence the relationship between observed and modelled LUE. The temporal dy-
namics of both the MODIS and SeaWiFS faPAR are very similar, Cyclopes faPAR
is not available for this site.

The strongest faPAR induced difference in fit between models and observations
occurs at the deciduous broad-leaved US-MMS forest. There, using MODIS faPAR
results in the best fit. Cyclopes faPAR for US-MMS shows a too gradual decrease
in autumn/winter and a too early (but at the same time too slow) increase in spring.
In contrast, the SeaWiFS faPAR seems to have too steep increases and decreases
and the beginning and end of the growing seasons (data not shown).
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Fig. 4.9: LUE modelled from PRI (black), from MOD17 parameters (red), and from
optimised MOD17 parameters (blue) versus ecosystem LUE calculated from fluxes and
MODIS faPAR. Shown are only points for which a near-nadir PRI observation exists for
the respective study site. Significance codes: p value ≤ 0.001: ? ? ? ; p value ≤ 0.01: ??

In contrast with the other two faPAR products, Cyclopes faPAR at the ZA-Kru sa-
vanna site has a lower amplitude and does not seem to track the beginning and
end of the growing season properly (concluded from comparing faPAR and GPP
time series, data not shown). This might be the reason of the poor agreement
between model and observation for the Cyclopes based LUE. SeaWiFS faPAR
captures the length of the growing season for this savanna site well, which might
be the reason for the higher agreement when using this faPAR product.

At the FR-Pue evergreen oak forest, both the MODIS and the SeaWiFS faPAR
product show hardly any seasonality. This is probably why, despite MODIS faPAR
having higher absolute values, choosing one or the other faPAR product has no
influence on model fit. Cyclopes faPAR for the FR-Pue site has higher values in
winter. The model fit is worse when LUE is based on Cyclopes faPAR.

At the other evergreen oak forest, IT-Cpz, using SeaWiFS faPAR instead of the
other faPAR products to calculate in-situ LUE results in a higher agreement with
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Fig. 4.10: Scatterplots with R2 of faPAR from different products (Black: MODIS – M),
Red: SeaWiFS – S, Blue: Cyclopes – C) vs. PRI with site-specific most suitable reference
band. Significance codes: p value ≤0.001: ∗ ∗ ∗; p value ≤0.01:∗∗
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Fig. 4.11: Top: Time series of observed LUE as 14-day moving average (based on
MODIS faPAR) and modelled LUEs (exponential model based on PRI with reference
band 1, MOD17, and optimised MOD17) at the FR-Pue site. Bottom: Water deficit in mm
(calculated from field capacity and in-situ soil water content measurements).

LUEPRI (c.f. Fig. 4.8). A reason might be that the MODIS faPAR algorithm de-
pends on proper biome classification and biome-specific canopy structures and
soil patterns (McCallum et al., 2010).

4.3.6 Influence of vegetation structure on the PRI signal

For the deciduous sites (ZA-Kru and US-MMS), the MODIS photochemical re-
flectance index can be estimated from faPAR (see Fig. 4.10). The intra-annual
changes in MODIS PRI are related to the temporal dynamics of total leaf area.

The fraction of PAR absorbed by the vegetation at the evergreen sites shows little
seasonal variation compared to the changes in PRI. Thus, for these sites the
changes in PRI cannot be explained by variation in faPAR. This suggests that
the changes in PRI in those evergreen sites are more a result of changes in leaf
pigment composition rather than structural changes.
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Fig. 4.12: Top: Time series of observed LUE as 14-day moving average (based on
SeaWiFS faPAR) and modelled LUEs (exponential model based on PRI with reference
band 4, MOD17, and optimised MOD17) at the IT-Cpz site. Bottom: Water deficit in mm
(calculated from water balance).

4.3.7 Sensitivity of the different modelled LUEs to seasonal and in-
terannual variability

The modelling approaches detailed in this study (c.f. Sects. 4.2.3.3, 4.2.4) differ
in how well they are capable of reproducing annual and interannual variations in
LUE.

At the evergreen oak site FR-Pue, LUEPRI1 does capture the seasonal dynamics,
including the decline in LUE during summer drought, but not the interannual vari-
ability (c.f. Fig. 4.11). The observed LUE decline in summer is more pronounced
during the 2003 heat wave, while the LUEPRI1 amplitude is similar to other years.

LUEMOD17 is less capable of capturing the summer depression than the PRI based
model. LUEMOD17.opt reproduces the minimum of summer depression well, but the
modelled summer depression is much longer than observed.

At the other evergreen oak site, IT-Cpz, no distinct interannual variability is ob-
served. The seasonal cycle is captured well by LUEPRI4 (c.f. Fig. 4.12). Depending
on the faPAR product used for the in-situ LUE, LUE is severely over- or underes-
timated by LUEMOD17, the seasonal cycle is not well reproduced. LUEMOD17.opt

shows a dampened seasonal cycle and in general underestimates LUE.

At US-MMS the time series has gaps during cloud cover in winter time, but there
are still enough observations and PRI data to estimate the annual minimum in
LUE. There is a peak in observed LUE in summer 2002 that is not reproduced
by LUEPRI1 , otherwise the seasonality is tracked well (not shown). LUEMOD17

does not match the LUE observations in spring and autumn, while LUEMOD17.opt

underestimates the LUE peak in summer.

The evergreen needle-leaf site (US-Me2) possesses a low seasonal variability
of LUE. The small fluctuations that are observed are neither well simulated by
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LUEPRI, nor by LUEMOD17 or LUEMOD17.opt (not shown).

The short LUE time series of the savanna site is mimicked well by the PRI model,
apart from an overestimation in 2002 and some missed nuances (not shown).
LUEMOD17 and LUEMOD17 values underestimate LUE observations, except for the
southern-hemisphere winter in 2002, when the observed LUE is low compared to
other years.

4.4 Discussion and conclusions

We conclude that in general estimating LUE at site-level based on PRI reduces
uncertainty compared to the other approaches we tested. There is only one set
of LUE observations which can be slightly better approximated by an LUE model
based on VPD and Tmin than by LUEPRI: the 0–40◦ viewing zenith angle FR-
PUE data (c.f. Figs. 4.7, 4.8). Note that this LUE is not derived from the standard
MOD17 parameters, but from parameters that have been optimised per site and
year. This indicates that, at site level, MODIS-based PRI is very competitive as a
proxy for light use efficiency.

It is apparent that fine-tuning maximum light use efficiency as well as the VPD
and Tmin parameters improves the performance of MOD17 type models of LUE
(and ultimately GPP). However, our results support the growing body of evidence
suggesting that Tmin and VPD alone are not sufficient to characterise temporal
LUE (and hence GPP) dynamics due to i.e. drought stress (Kanniah et al., 2009b;
Maselli et al., 2009; Garbulsky et al., 2010). Soil water availability determines
stomatal conductance (Rambal et al., 2003) and hence productivity to a large ex-
tent and must be considered in LUE models that constrain a maximum LUE with
environmental variables. Soil water estimates are difficult to obtain over larger re-
gions. Estimates derived from remote sensing data are still poor, especially for
forests (Guglielmetti et al., 2008). Surrogates of soil water content based on evap-
otranspiration and precipitation could be a viable alternative Leuning et al. (2005);
Coops et al. (2007). Remotely sensed indices of vegetation water content such
as the land surface water index (Xiao et al., 2005) or surface temperature might
also help to obtain the seasonal variations of LUE in models that determine pho-
tosynthetic efficiency from environmental stresses (Hilker et al., 2008b). For these
approaches, constraints due to different image acquisition geometries must also
be considered.

For the South-African savanna site and the humid subtropical deciduous broad-
leafed forest (US-MMS), the accuracy of LUE modelled from NDVI is comparable
to that of LUEPRI. At both sites, vegetation greenness and faPAR (as well as leaf
area) are intrinsically linked to CO2 exchange. Hence NDVI and faPAR display
similar seasonal dynamics as light use efficiency (Garbulsky et al., 2011). The
PRI signal in general is influenced both by changes in vegetation structure and
by changes in pigment composition. Unsurprisingly, the gain in accuracy through
using PRI instead of NDVI or faPAR is highest for evergreen sites where changes in
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LUE are largely unrelated to greenness and changes in leaf area simply because
there is little change in greenness over time while LUE varies significantly (see
also Running and Nemani, 1988; Gamon et al., 1992; Garbulsky et al., 2011).

Despite the advantages of using PRI to estimate LUE at site-level, we found no
universally applicable light use efficiency model based on MODIS PRI. Models
that are optimised for a pool of data from several sites do not perform well.

Plant functional type, even dominant species is not a sufficient criterion to gener-
alise PRI based models. The two sites that are dominated by Quercus ilex, FR-Pue
and IT-Cpz, seem to have a very different spectral response at comparable LUE
levels since their optimal reference bands are 1 (red) and 4 (green). The different
behaviour at IT-Cpz might be brought about by a different stand structure, as for
example manifested in a higher LAI (c.f. Table 4.1), as well as higher ground water
levels due to the closeness of the sea and hence less water stress (Valentini et al.,
1992).

The optimal reference bands we determined (MODIS bands 1, 4, 12) fall within the
spectral regions identified by Middleton et al. (2009); Cheng et al. (2009) as useful
PRI reference wavelengths in a study on foliar LUE in a Douglas fir stand. Mid-
dleton et al. (2009) also showed that a PRI based on the relatively broad spectral
bands of MODIS (10 nm) correlates well with PRI values derived from 3 nm wide
bands. The results of our analysis suggest that the usability of different reference
wavelength might depend on species composition and stand structure. The first
study on PRI by Gamon et al. (1992) pointed out that no single reference wave-
length suited all purposes equally well (e.g. tracking LUE in unstressed and water
stressed sunflowers). The review by Garbulsky et al. (2011) points out that the
optical properties of the canopy are influenced – apart from species and environ-
mental conditions – by the fraction of dead and woody biomass, vegetation density
and spectral properties of the soil, all of which can affect the suitability of reference
bands. The present study adds to the body of knowledge showing that 570 nm is
not the only reference bands suitable for PRI. A data base encompassing more
sites with a diversity of functional and structural traits would be desirable to arrive
at a final conclusion in this regard.

In summary, when calibrated at site level a model based on MODIS PRI gives
better or at least as good estimates of ecosystem light use efficiency as the other
approaches we tested. In this study, an universally applicable model relating LUE
to MODIS PRI across different sites could not be found.





CHAPTER 5

Outlook

To increase the amount of data useful for a parameter estimation, it would be
helpful to include more heterogeneous sites in future analysis. A footprint clima-
tology assessment such as described by Chen et al. (2009) in combination with
multi-angular high spectral resolution measurements (Hilker et al., 2008a) would
be valuable for optimising model parameters in these cases. The impact of the
sun’s position on the PRI-LUE relationships in this study should be limited by the
similar data acquisition times (c.f. Fig. 4.2). Nevertheless, a follow on-study should
consider the sensor angle relative to the position of the sun to obtain certainty on
the influence of the image acquisition geometry on the PRI-LUE relationship.

Using only PRI values for near-nadir satellite observations does improve the accu-
racy of LUE predictions compared to using the whole range of viewing angles, or
observations binned in off-nadir 10◦ wide bands of viewing zenith angle. In a boreal
setting, modelling LUE only based on PRI derived from backscatter reflectance
also explained LUEobs variance better than when using observations combined
(Drolet et al., 2005, 2008). This is an indirect way of tackling the dependence
of reflectance on viewing geometry. When looking from different angles, different
fractions of e.g. tree canopy, understorey/grass, and soil will be visible to the sen-
sor and result in a variation of surface reflection. Excluding off-nadir observations
reduces this effect. For example, the validity of the more densely vegetated and
homogeneous FR-Pue site is less effected by viewing angle then the savanna site
where the contribution of trees to the signal by MODIS is more dependent on view-
ing angle. Another reason why near nadir data might have a better correspondence
with in-situ LUE is a smaller atmospheric effect on PRI/NDVI due to the shorter
Earth surface-satellite distance at small viewing zenith angles. The drawback of
excluding part of the data is of course that the temporal coverage might become
inadequate. Hilker et al. (2009) found that most of the directional effects on the
LUE-PRI relationship can be attributed to atmospheric scattering. The standard
single orbit algorithms such as 6S (Vermote et al., 1997) cannot compensate for
this atmospheric disturbance. MAIAC, a generic aerosol-surface retrieval algorithm
recently developed for MODIS (Lyapustin and Wang, 2009) showed promising re-
sults for detecting subtle changes in narrow waveband indices such as PRI (Hilker
et al., 2009).

Another promising approach seems to be the consideration of shadow fraction
in PRI-based estimations of PRI. Ground-based pilot studies have been very
successful in doing so (Hall et al., 2008; Hilker et al., 2009). The fraction of
shaded/sunlit parts of the canopy has an important influence on the light use effi-
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ciency of vegetation and not just the PRI signal. However, which fraction of sunlit
leaves is seen by a satellite depends on the position of the sensor relative to the
canopy and the sun as well as the canopy structure. If the vegetation structure is
not well known, uncertainty remains whether changes in PRI are due to a differ-
ent position of the sensor or due to actual changes in LUE. For space-borne PRI
studies, multi-angular acquisitions, taken within a short time period in which LUE
is constant, are necessary (Coops et al., 2010).

Future research directions to improve the knowledge on PRI could include the de-
velopment of physically-based models that predict reflectance changes at 531 nm.
Innovations in this regard must allow leaf optical properties to vary with leaf-level
illumination conditions and base the computation of reflectance changes on down-
regulation of photosynthesis (Coops et al., 2010).
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APPENDIX A

Appendix

A.1 MOD17 GPP model

Tab. A.1: The biome property look-up table (BPLUT) for MOD17 collection 5 (Heinsch
et al., 2003)

Biome type Parameter
LUEmax Tminmin Tminmax VPDmin VPDmax

(kg C MJ−1) (◦C) (◦C) (Pa) (Pa)

Evergreen needle forest 0.001008 -8.0 8.31 650 2500
Evergreen broadleaf forest 001159 -8.0 9.09 1100 3900
Deciduous needle forest 0.001103 -8.0 10.44 650 3100
Deciduous broadleaf forest 0.001044 -8.0 7.94 650 2500
Mixed forest 0.001116 -8.0 8.5 650 2500
Grassy woodland 0.000800 -8.0 11.39 930 3100
Wooded grassland 0.000768 -8.0 11.39 650 3100
Closed shrubland 0.000888 -8.0 8.61 650 3100
Open shrubland 0.000774 -8.0 8.80 650 3600
Grass 0.000680 -8.0 12.02 650 3500
Crop 0.000680 -8.0 12.02 650 4100

A.2 LUE modelled from PRI
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0.2
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0.23

0.17
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0.24
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0.28
0.25
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0.27

0.23
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0.44

0
n.s.

n.s.
n.s.

30-40
◦

0.1
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0.1
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0.13
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0.14

0.11
0.01

0.21
0.18

0.01
0.14

0.1
0.03

0.25
0.22
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0.01

0.04
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0.01
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0.11
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S
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-0.04
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Zusammenfassung

Die Erforschung des globalen Kohlenstoffkreislaufs ist Teil der Bestrebungen, das
Erdsystem einschließlich der Wechselwirkungen zwischen seinen Komponenten
Atmosphäre, Biosphäre, Hydrosphäre und Geosphäre zu verstehen. Aufgrund der
deutlichen Beinflussung des Kohlenstoffkreislaufes - und indirekt anderer Stoff-
und Energieflüsse - durch menschliche Aktivitäten ist das Interesse an diesem
Wissenschaftsfeld nicht nur akademischer Natur.

Gesicherte Erkenntnisse über die Funktionsweise des globalen Kohlenstoffkreis-
laufes können nur durch die geschickte und möglichst vielseitige Kombinationen
von Erdsystemmodellen mit Messungen erzielt werden. Ein wichtiger Teilbereich
sind hierbei Modelle der Primärproduktivität, also der Assimilierung von Kohlen-
stoff durch die Vegetation, denn dies ist die wichtigste Senke von CO2 abgesehen
von (auf anderen Zeitskalen relevanten) geologischen Vorgängen.

Ein guter Teil der diagnostischen Modelle, welche die aktuelle Produktivität der
Vegetation quantifizieren, basieren auf dem Konzept der Lichtausnutzungsef-
fizienz (light use efficiency, LUE): die von den Pflanzen absorbierte Lichtenergie
wird mit einem bestimmten Wirkungsgrad in chemische Energie umgewandelt. Die
Lichtausnutzungseffizienz hängt vom Vegetationstyp, biotischen und abiotischen
Standortbedingungen ab. In globalen Modellen wird LUE häufig abstrahiert, indem
eine (eventuell biom-spezifische) maximale Lichtausnutzungseffizienz festgelegt
wird, aus der die tatsächliche LUE als Funktion leicht zu quantifizierender Umwelt-
faktoren ermittelt wird. Im Fall des operativ betriebenen MOD17-Models der
Nettoprimärproduktion sind die limitierenden Faktoren die Tagesminimumtemper-
atur und das Sättigungsdefizit von Wasserdampf in der Atmosphäre. Schwächen
dieses Models sind strukturelle Defizite, z.B. die ungenügende Berücksichtigung
des Bodenwassergehaltes, und durch die Verwendung globaler meteorologis-
cher Datensätze bedingte Ungenauigkeiten. Diese Schwierigkeiten machen sich
besonders für immergrüne Vegetation unter Trockenstress bemerkbar, wenn die
photosynthetische Aktivität trotz relativ konstanter Lichtabsorbtion stark sinkt.

Der Photochemische Reflexionsindex (photochemical reflectance index, PRI) hat
sich in zahlreichen Studien an einzelnen Blättern bis hin zur Ökosystemebene
als Schätzer der Lichtausnutzungseffizient bewährt und ist daher auch für glob-
ale Produktivitätsmodelle als Alternative zur Berechnung der photosynthetischen
Effizienz aus meteorologischen Daten und einem fixen Maximalwert interessant.
Der spektrale Index nutzt aus, dass eine Verringerung der photosynthetischen Ef-
fizienz mit einem veränderten Reflexionsverhalten im Bereich um 531 nm einher
geht. Dieses Signal wird durch die in einem von diesen Mechanismen nicht bee-
influssten Spektralbereich gemessene Reflexion normalisiert. Bisher wurde noch
kein Model veröffentlicht, das aus satellitengestützen PRI-Messungen Lichtaus-
nutzungseffizenz allgemeingültig für mehrere funktionelle Pflanzentypen und Kli-
mazonen berechnet.



In dieser Arbeit wurde an mehreren Standorten mit zeitweiligem Trockenstress un-
tersucht, welches PRI-Referenzband und welcher Aufnahmewinkel sich am besten
für die Ableitung der Lichtausnutzungseffizienz auf Ökosystemebene eignet.
Die Anwendbarkeit einer Vielzahl von denkbaren Produktivitätsmodelen auf der
Grundlage von MODIS-PRI wurde für verschiedenartige funktionelle Pflanzen-
typen mit unterschiedlichen Vegetationsdichten geprüft. Eine Kernfrage der Ar-
beit ist, ob trotz bekannter Einschränkungen wie zum Beispiel der Abhängigkeit
des PRI von der Aufnahmegeometrie, mit vorhandenen Mitteln ein unter unter-
schiedlichen Bedingungen universell anwendbares PRI-basiertes Model der Lich-
tausnutzungseffizienz entwickelt werden kann. Diese von PRI abgeleitete LUE
wurde mit der Lichtausnutzungseffizienz aus dem konventionellen MOD17-Modell
und der LUE aus einem mit lokalen Meteorologischen Daten optimierten MOD17-
Modell verglichen.

Es wurde außerdem betrachtet, welchen Einfluss die Wahl verschiedener fern-
erkundlicher faPAR-Produkte auf die als Referenz verwendete in-situ Lichtaus-
nutzungseffizienz hat. faPAR (d.h. der relative Anteil absorbierter photosyn-
thetisch aktiver Strahlung) ist zur Berechnung der insgesamt von der Vegetation
absorbierten Energie unabdingbar und beeinflusst daher die gesamte Evaluierung.

Ein Ergebnis der vorliegenden Arbeit ist, dass ein für einzelne Standorte kalibri-
ertes PRI-gestützes Produktivitätsmodell genauer ist als das mit lokal gemessenen
meteorologischen Daten betriebene MOD17-Modell. Es konnte jedoch kein PRI-
LUE-Modell gefunden werden, dass für mehrere Standorte Gültigkeit hat. Neben
den Modelparametern unterscheiden sich auch die jeweils best-geeigneten Ref-
erenzbänder zwischen verschiedenen Standorten. Somit kann der lokal erzielte
Genauigkeitsgewinn nicht für größere und damit heterogeneres Gebiete genutzt
werden.

Diese Arbeit stellt durch den methodischen Vergleich zahlreicher Einflussfaktoren
einen wertvollen Beitrag zur fernerkundlichen Messung der Lichtausnutzungsef-
fizienz und damit zur Verbesserung von globalen Modellen der Ökosystemproduk-
tivität dar.
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