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Youmin Chen, Galina Churkina and Martin Heimann 

Max-Planck-Institute for Biogeochemistry 
 

1. Introduction 
 
The meteorological environment represents one of the most important factor of 
ecosystem functioning and constitutes a key input driver for ecological models. Therefore, 
in order to perform continental scale ecosystem model simulations, time series of gridded 
meteorological fields are needed. Since in situ meteorological observations are 
heterogeneous in space and time, state of the art analyses in conjunction with dynamical 
general circulation models (weather forecast models) can be used to produce internally 
consistent gridded fields of the relevant meteorological variables. Here we first compare 
several of such meteorological data products of various origins in view of using them as 
drivers of gridded ecosystem models at the continental scale. In particular we compare: 
(1). CRU: i.e. CRU TS 2.1 dataset, which consist of the monthly meteorological fields 
compiled by the Climate Research Unit of the University of East Anglia, Norwich, UK. 
(http://www.cru.uea.ac.uk/cru/data/hrg.htm) 
(2). ECHAM5: Meteorological fields are simulated by the global climate model 
ECHAM5 driven by observed changes in greenhouse gas and aerosol forcing 
(http://www.mpimet.mpg.de/en/wissenschaft/modelle/echam/echam5.html).  
(3). ECMWF and NCEP: Reanalysis data compiled by the weather forecasting centers of 
the European Center for Medium-Range Weather Forecast (ECMWF, 1997) and the 
National Center for Environmental Prediction (Kalnay, E., et al. 1996,) respectively. 
(4). REMO: High-resolution meteorological fields from a regional mesoscale model 
simulation forced at the boundaries by NCEP reanalysis (Feser et al., 2001). 
 
Through the data comparison it is found that no any single data set could satisfy all our 
purpose as ecosystem modeling driver. Normally for ecosystem model simulation the 
daily data covering long time period is needed. However, the data sets with daily data 
available usually cover the short time periods such as REMO (1948-2007) and ECMWF 
(1958-2001). CRU data set covers relatively long time period (1901-2002) but only the 
monthly data is available. The data set ECHAM5 could supply longer time daily data 
(1860-2000), but it is purely model simulation and the data is not well comparable with 
the in-situ observation. Therefore our goal is to develop climate data sets satisfying the 
following conditions: (1) both daily and monthly data are available; (2) the data is 
comparable with the in-situ observation; (3) the data cover long time period. 
  
Below are work steps we followed in making the new data set called “MCRU”:  
 

1. Based on available CRU variables calculate new variables: Relative Humidity, 
Daylight Temperature and Daylight vapor pressure deficit and Solar radiation  
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2. Re-map variables from CRU dataset and variables obtained at step 1 from 0.5 
degree to 0.25 degree grids  

3. Define common grids between variables obtained at step 2 and REMO variables 
4. Establish regression between variables obtained in step 3 and REMO variables 

and extend variables obtained in step 3 until 2007 
5. Construct monthly values for three periods: 1861-1900; 1901-2002; and 2003-

2007.  
6. Calculate daily values from monthly values obtained at step 5 using ECHAM5 

daily variability for 1861-1947 and REMO daily variability for 1948-2007  
 
A new data set was generated following the above mentioned steps, the name of which is 
“MCRU”, e.g. the Modified CRU data set. The monthly values of MCRU variables are 
equal to the respective values from CRU data set when the CRU data is available (1901-
2002). The MCRU monthly values for 1861-1900 and 2003-2007 are calculated from 
other sources but consistent with CRU data. The early MCRU monthly values (before 
1901) are computed from ECHAM5 data set and later MCRU monthly values (after 2002) 
are the regression results between REMO and CRU data sets. In addition, we have to 
manage to generate some variables, which are not directly available from CRU data set 
but could be calculated through the existing CRU variables, which we still call CRU 
variables such as relative humidity, daylight temperature, vapor pressure deficit and 
radiation.  
 

2. Step 1: Calculating relative humidity, daylight temperature, vapor pressure 
deficit and radiation 

 
From the CRU archive there are variables as temperature, precipitation, cloudiness and 
vapor pressure. Other variables such as relative humidity, daylight temperature, daylight 
vapor pressure deficit as well as radiation are not directly available. They have to be 
calculated from the existing variables based on the standard formula or on algorithm used 
in ecosystem models. 
 
Relative Humidity (RHY) 

Formula: RHY=100*(e/es) 
          e=es0*exp(lv/Rv*(1/T0-1/Td))  -vapor pressure 
          es=es0*exp(lv/Rv*(1/T0-1/T))  -saturated vapor pressure 

     T-  absolute temperature [K] 
     Td - absolute dewpoint temperature [K] 
     T0: T0=273.15 [K] – temperature constant  
     es0: es0=6.11 [hPa] – vapor pressure constant  
     lv: lv=2.5e6=2.5*106  - gas constant for air 
     Rv: Rv=461.5 [joules*Kelvin/kilogram] - gas constant for water vapor  

 
Daylight Temperature (tday) 
tday=((tmax-tmean)*0.45)+tmean  
tmax: daily maximum temperature [◦C]  
tmean: daily mean temperature [◦C)] 
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Daylight Vapor Pressure Deficit (VPD) 
Formula: VPD=610.7*(exp(17.38*tday/(239.0+tday))-exp(17.38*tdew/(239.0+tdew)) 
                tday=((tmax-tmean)*0.45)+tmean [◦C] 
                tmax - daily maximum temperature [◦C] 
                tdew - daily dewpoint temperature [◦C] 
                tmean - daily mean temperature [◦C] 
 
 
Radiation (RAD: surface solar radiation downwards) 
The radiation variable is calculated using algorithm of ORCHIDEE or LPJ models based 
on the existing CRU variables such as the temperature, cloudiness and so on. After the 
comparison of the radiation calculated both models, radiation calculated by ORCHIDEE 
model is chosen as the part of the “MCRU” data sets since the radiation pattern from 
ORCHIDEE looks more similar to REMO radiation pattern (figure 12). 
 
Step 2: Re-map climate variable from 0.5 grid to 0.25 grid 
The CRU data has 0.5/0.5 degree spatial grids over the land only. The REMO and 
ECHAM5 data have been interpolated into 0.25/0.25 degree spatial grids. There is a 
mismatch between REMO grids and CRU grids. We remap the CRU data from 0.5/0.5 
grids to 0.25/0.25 grids in a simple way, i.e. simply divide one CRU pixel into four pixels 
with same value so that each of the sub-pixels has 0.25/0.25 degree interval. 
 

3. calculating MCRU variables by data combination 
 
(3.1) Temperature 

 
(3.1.1) spatial patterns 

 
Figure 1a and 1b show temperature patterns of 20 year average from 1980 to 1999, 
respectively for CRU data and MCRU data. The slight differences in the temperature 
patterns between CRU and MCRU datasets are explained by different grid sizes, one is 
0.5 degree and another one is 0.25 degree. The figure 1(c) shows the MCRU temperature 
pattern for the period from 2003 to 2006, when the MCRU data was generated by 
regression between CRU and REMO. The similarity of MCRU patterns between early 
time (1980-1999) and later time (2003-2006) indicates that the regression of temperature 
from CRU data and REMO data gives a quite good result in term of the multiple averages 
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Figure 1: Spatial patterns of temperatures from (a) CRU averaged over 20 years (1980-
1999); (b) MCRU averaged over 20 years (1980-1999); (c) MCRU averaged over four 
years (2003-2006)  

a 

b 

c 
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(3.1.2) regression validation 

 
 
The MCRU variables after the year 2002 have been obtained as the result of regression 
between REMO and CRU variables. We used 30 years of climate data (1971-2000) to 
develop the regression equations. The regression was performed for each pixel and each 
month separately. Therefore there are total 24531 valid pixels for MCRU data sets, which 
lead to 294372 (23531*12 months) regression equations. Generally the regression 
correlation coefficient is used to analyze these regression equations. So we have the same 
number of correlation coefficients as for that of regression equations for regression 
validation. We used the histogram to see how the regression correlation coefficients are 
distributed (Figure 2). Most of the correlation coefficients are larger than 0.8, which tell 
that the regression of temperature give good results. Finally the monthly MCRU data is 
constructed, in which the data from 1901-2002 are exactly the CRU data; the data before 
1901 are modified ECHAM5 data (see about radiation variable above?); and the data 
after 2002 are regression results between REMO and CRU.  

 
Figure 2: The histogram of correlation coefficients for temperatures for 2003-2007. The 
smooth line was fitted by Johnson SB method.  
 

(3.1.3) daily data construction 
 
Based on the monthly MCRU climate data we construct the MCRU daily data, in which 
the REMO or the ECHAM5 daily data will be used together. When we use REMO daily 
data to construct MCRU daily data, first the difference between monthly CRU and 
REMO variables is defined. Then the REMO daily data will add up the monthly 
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difference, which leads to the MCRU daily data. The daily data in specific month will 
add up the same monthly difference and the neighbor months will have the different 
monthly values to be added up. Therefore it could make abrupt change between the 
neighbor months. We assume that these sorts of abrupt changes are small for three 
reasons: the scale of monthly difference is much smaller than the daily variability; the 
monthly differences between different datasets are small; the monthly differences 
between the neighbor months are small. As long as one reason is reasonable we would 
generate the reasonable MCRU daily data.  
 
The daily data construction is illustrated below: 
 
 
 
 
 
 
Figure 3 shows the weighted annual average of temperature for Europe. There are two 
curves close to each other: one is from the original MCRU monthly data and another one 
is from the daily data. The red curve is from REMO data which shows the difference 
between monthly REMO and CRU (same as MCRU) temperatures is quite small.  
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Figure 3: The area weighted average of MCRU (green and dash lines) and REMO (red) 
temperatures for Europe. The dash line is the weighted average from the constructed 
daily data.   
 
 
 
 

)5(ECHAMREMOCRU monthlymonthlydiff −=

diffdailydaily ECHAMREMOMCRU += )5(
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(3.1.4) data comparison and annual variation 
 
Figure 4 shows the weighted average temperature of Europe as in the figure 3, but with 
more data sets such as CRU, ECHAM5, ECMWF, NCEP and REMO. ECHAM5 shows 
substantial inconsistence with all other data sets. The annual temperatures of Europe from 
other data sets are comparable with each other.  
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Figure 4: The comparison of area weighted average temperatures from CRU, ECHAM5, 
ECMWF, NCEP and REMO data set for Europe. 
 

(3.1.5) daily data illustration 
 
Validation of spatial climate datasets with site observations 
The data validation above is based on monthly data; however the final data set is at the 
daily scale. It is difficult to validate all the daily data since it is too much of work because 
of the large amount of data. On the other hand, the observed daily data is not always 
available for validating the simulated data set. Here we use 10 year daily data (1980-1989) 
from meteorological station in Jena to compare data with the corresponding REMO and 
MCRU data.  
First we used the quartile-quartile plot (q-q plot) for comparing the daily distribution of 
temperature  (figure 5). The x-direction is about REMO or observation (OBS) data and y-
direction is about MCRU or REMO data. These three q-q plots are going along the 
diagonal, which means the data from MCRU, REMO and observations have similar 
distribution.  
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Figure 5: The quartile-quartile plot (q-q plot) between REMO, MCRU and OBS 
(observation) based on 10 year daily temperature data from 1980 to 1989.  (a) REMO 
and MCRU; (b) OBS and REMO; (c) OBS and MCRU. 
 
 
Based on the 10 year daily data we made 10 year average for each day (figure 6) which 
shows the mean seasonal variation of the variables. There are a bit different values for the 
10 year average but the temporal variation is quite similar between OBS, REMO and 
MCRU. Three data sets show the regular temperature drop in the beginning of January 
(day 10) and the end of February (day 50).  
 

 
Figure 6: The seasonal cycle of temperatures from OBS, REMO and MCRU data sets. 
Each data point is calculated as the ten year daily averages from 1980 to 1989. 

 
(3.2) precipitation 

  
Precipitation is one of the most complicated variables because it has discontinuous spatial 
patterns and the sum instead of average is often used for analysis. When making 
precipitation data, one cannot simply add up component as it is done for temperature. 
Instead, the ratio between different components is used to construct the precipitation data. 
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(3.2.1) spatial patterns 
 
Figure 7a shows the MCRU precipitation pattern computed as 20 year average (1980-
1999) over European domain. It shows several larger precipitation centers, such as 
Norwegian coast, along Alps, UK coast and Portugal coast. Figure 7b depicts also the 
average precipitation pattern but for 2003 - 2006, when the regression was used to extend 
CRU data set as MCRU data. Since precipitation patterns on Figure 7a and Figure 7b 
look similar, we conclude that using regression to extend precipitation data provides 
rather good spatial pattern results.  

 
Figure 7: Spatial patterns of annual precipitation from MCRU dataset: (a) averaged over 
20 years (1980-1999); (b) averaged over four years (2003-2006). 
 
 

a 

b 
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(3.2.2) regression validation 
 
To check the quality of precipitation data for 2003-2006, the correlation coefficients are 
analyzed for validating the regression equations. Similarly as for temperature variable, 
there are total 294372 correlation coefficients, and the histogram is used to see the 
distribution of the correlation (figure 8). Most of the correlation coefficients are 
concentrated around 0.7 and 0.8, that indicates that the regression gives good results for  
majority of the pixels. However, for some pixels the correlation coefficients close to zero. 
When the correlation coefficient is very small, or near zero, the regression equation will 
take the value of the multiple year average as the regression results. Thus, it is assured 
that the average pattern from regression results will always be similar to the original 
average pattern, no matter how good are the regression coefficients. In case the regression 
coefficients are small, there will be no or little temporal variation since every year’s 
values were taken from multiple year average.  
 

 
Figure 8: The histogram of correlation coefficients of regression for extending 
precipitation data for 2003-2007. The smooth line is the fitting by Johnson SB method.  
 
 

(3.1.6) daily data construction 
 
As it is mentioned above that the ratio will be used to calculate the precipitation. The 
ratio is defined as: 
 
 
 
 
monthlyCRU – monthly precipitation from CRU data set. 
monthly REMO (ECHAM 5)  - monthly precipitation data from REMO (or ECHAM5) data set. 

)5(

)5( )(
ECHAMREMO

ECHAMREMOCRU
monthly

monthlymonthlyratio −
=
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The monthly precipitation are often very small in the arid and semiarid regions, which 
lead to the very large ratio. In this case an unrealistically large precipitation would be 
calculated. To prevent it from happening, an artificial control is used to calculate the ratio, 
which is as: 
 
if   monthly REMO (ECHAM 5)  <= 1mm  then ratio=0     
 
It constrains the amount of precipitation with a reasonable value. Once the ratio based on 
monthly data is calculated, the MCRU daily data can be computed as: 
 
 
dailyMCRU – daily precipitation from MCRU dataset 
dailyREMO(ECHAM5) – daily precipitation from REMO or ECHAM5 dataset 
 
When the computed daily precipitation is negative, it is forced to zero, i.e.  
 
 
 
Although the area weighted average for precipitation from MCRU monthly data and from 
constructed daily MCRU data mostly coincide well, some mismatch exists sometimes 
(Figure 9). The precipitation mismatch occurs because of the artificial control of monthly 
ratio and negative daily values. The red curve is from REMO data, which shows 
significant disagreement of precipitation data for CRU and REMO data sets.  
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Figure 9: The area weighted average of MCRU (green and dash lines) and REMO (red) 
precipitation. The dash line is the weighted average from the constructed daily data.   
 

)1()5( ratiodailydaily ECHAMREMOMCRU +=

)0( ≥MCRUdaily
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(3.2.3) data comparison and annual variation 

 
Contrary to temperature data comparison, the comparison of area weighted precipitation 
data from CRU, ECHAM5, ECMWF, NCEP and REMO displays much large difference 
between different data sets (Figure 10). NCEP data shows the decline of precipitation. 
Annual precipitation from ECMWF is substantially smaller (up to 100 mm per year) than 
from the other data sets. CRU precipitation is located in the middle of all the data sets and 
shows stable temporal variation without clear trend and abrupt changes during the 
displayed time period. Nevertheless the inter-annual variability of precipitation from most 
datasets is similar, except for ECHAM5 data set.   
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Figure 10: The precipitation data comparison with the area weighted average from CRU, 
ECHAM5, ECMWF, NCEP and REMO data sets respectively. 
 

(3.2.4) Detrending of ECHAM5 precipitation 
 
To produce MCRU data set for 1861-2002 we combined the precipitation from ECHAM5  
for 1861-1900 and CRU for 1901-2002. First, monthly precipitation from ECHAM5 was 
shifted based on the difference between precipitation from CRU and ECHAM5 for 30 
year average (1971-2000). This shift revealed inconsistencies between precipitation from 
ECHAM5 and CRU data sets. The area weighted average precipitation from ECHAM5 
had negative trend, while precipitation from CRU had positive trend. Although both 
trends were not significant in term of 5% significance, when one combined these two data 
sets together, there was a “V” shape before and after the connection point, which may not 
be realistic. Since we had more confidence in precipitation from CRU data sets, 
precipitation from ECHAM5 was detrended  (Figure 11a). Apparently, the precipitation 
for 1901-2007 was the same and the resulting precipitation  for 1861-1900 was different 
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(Figure 11b). The detrended ECHAM5 precipitation is better, though the “V” shape is 
still noticeable in year 1900.  

 

 
 
Figure 11: (a) The comparison of ECHAM5 raw data and detrended data in area 
weighted average and (b) the comparison of MCRU precipitation data constructed with 
raw (dish line) and detrended ECHAM5 data (green line). 

 
(3.3) Solar radiation 

 
The radiation data used in this study is called the “surface solar radiation downwards 
(SSRD)”, which is one of the important forcing factors for ecosystem model. It is equal to 
the net solar radiation plus reflected short wave radiation. There is no radiation data 
directly available from CRU data. However, some ecosystem models could calculate the 
radiation based on the existed CRU variables, e.g. temperature and cloudiness. We used 
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algorithms of two ecosystem models to calculate radiation, i.e. ORCHIDEE and LPJ, 
with the corresponding radiation data sets as ORCHIDEE_CRU and LPJ_CRU 
respectively. The unit of radiation data is W/m2. 
 
(3.3.1) spatial patterns of solar radiation 
  
The ORCHIDEE_CRU and REMO radiation have similar spatial patterns (figure 12a and 
12c) and the also similar temporal variation (figure 17 and figure 18). The LPJ-CRU 
radiation has erroneous spatial patterns, with radiation decreasing from south-west to 
north-east (Figure 12b). We used ORCHIDEE algorithm for estimation of radiation in 
MCRU dataset.  
The MCRU radiation averaged over four years (2003-2006) is the regression result 
between ORCHIDEE_CRU radiation and REMO radiation. The MCRU radiation 
patterns averaged over four years had similar structure to the 20 year (1980-1999) 
average pattern (Figures 12d and 12e).  

 
Figure 12: The radiation spatial patterns in 20 year average of ORCHIDEE-CRU (a);  
LPJ-CRU (b); REMO (c); MCRU (d), as well as MCRU pattern (e) with 4 year average 
(2003-2006). 

a b 

c d 

e 
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(3.3.2) validation of regression 
 
The MCRU radiation after 2003 is the result of regression between REMO radiation and 
ORCHIDEE_CRU radiation (294372 regression equations).The regression results for 
radiation (Figure 13) are worse than for temperature and precipitation (Figure 2 and 8). 
Though most of the correlation coefficients concentrated around 0.7, there are many 
pixels with correlation coefficients close to zero.   

 
 
Figure 13: The histogram of correlation coefficients of regression for extending radiation 
data for 2003-2007. The smooth line is the fitting by Wakeby method.  
 
(3.3.3) Step 5: Modifying ECHAM5 data  
 
To construct the MCRU monthly data, we modified ECHAM5 data for the time period 
from 1861 to 1900. We use radiation variable as an example to explain how the 
ECHAM5 data was modified. Figure 14 shows of MCRU, REMO and ECHAM5 
radiation data. The difference between the area weighted average radiation from MCRU 
and ECHAM5 is quite large (Figure 14). The MCRU data for the period form 1861 to 
1900 was calculated from the modified ECHAM5 data, so both MCRU and ECHAM5 
data have the same annual variation during that period. First we calculate difference 
(CRU-ECHAM5) between monthly CRU (MCRU) and ECHAM5 variables based on the 
time period from 1971 to 2000. Afterwards, all the ECHAM5 data from 1861-1900 
would be added up the difference (CRU-ECHAM5), which will become the MCRU data. 
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Figure 14: The radiation data comparison between MCRU, ECHAM5 and REMO, which 
show the early MCRU data (1861-1900) is the shifted result of ECHAM5 data. 
 
(3.3.4) Step 6: daily data construction  
  
Like the temperature variables, radiation is also a continuous variable, so that similar 
method as for temperature is used to construct the daily radiation data. First the difference 
of monthly values is calculated as: 
 
 
 
monthlyCRU - monthly temperature or radiation from CRU dataset 
monthlyREMP(ECHAM5)- monthly temperature or radiation from REMO or ECHAM5 
datasets 
 
Then the daily values is as 
 
 
 
dailyCRU - daily temperature or radiation from CRU dataset 
dailyREMP(ECHAM5)- daily temperature or radiation from REMO or ECHAM5 datasets 
 
The only difference with temperature calculation is that daily values have to be larger 
than zero, i.e. dailyMCRU >=0. 
 
MCRU radiation data from monthly data and from constructed daily data coincide very 
well (Figure 15). The red curve shows annual radiation from REMO, which has good 
agreement with  MCRU radiation.  
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Figure 15: The area weighted average of MCRU (green and dish lines) and REMO (red) 
radiation. The dish line is the weighted average from the constructed daily data.   
 
From 1901 to 1940 one can see the unusual small variability of the annual radiation 
variation (figure 14). To find the possible reason, we made a similar plot with cloudiness 
data (figure 16). The MCRU radiation data is calculated based on CRU cloudiness data 
using algorithm from ORCHIDEE model, so that the radiation data characteristics come 
from CRU cloudiness data Radiation data has small variability similar to cloudiness data 
between 1901 and 1940. Radiation and cloudiness show the opposite variation between 
them, i.e. higher (lower) cloudiness corresponds to lower (higher) radiation.   

  
Figure 16: The area weighted average of MCRU cloudiness, which shows the opposite 
variation with radiation data.  
 
 
 

1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

60

62

64

66

68

C
lo

ud
in

es
s 

(%
)



MPI-BGC Tech Rep 15: Chen, Churkina and Heimann, 2009 
 

 20 

(3.3.5) data comparison and annual variation 
 
Annual radiations from CRU (ORCHIDEE_CRU) and from REMO compare well 
(Figure 17). The radiation data from ECHAM5 has the smallest values and ECMWF 
radiation is a bit smaller than REMO and CRU radiation data. The ECMWF radiation has 
quite similar annual variation as the radiation from CRU and REMO. Figure 18 displays 
the radiation comparisons for longer time period, where the LPJ_CRU radiation data has 
the similar inter-annual variation with ORCHIDEE_CRU radiation, but the absolute 
value radiation from LPJ_CRU is much larger.  
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Figure 17: The radiation data comparison with the area weighted average from CRU, 
ECHAM5, ECMWF, and REMO data sets respectively. 
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Figure 18: The radiation data comparison with the area weighted average from 
ORCHIDEE-CRU, REMO, ECHAM5, and LPJ-CRU data sets respectively. 
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3.4  Vapor Pressure Deficit 

  
(3.4.1) Regression validation 
 The “daylight vapor pressure deficit (VPD)” is calculated from daylight temperature and 
dew point temperature, which supply the data from 1901 to 2002. Similarly, the data after 
2002 have to be generated through regression with REMO’s VPD data as the predictor.  
Figure 19 shows the distribution of correlation coefficients of regression equations for 
extending the VPD data up to 2007. The diagram graph has the similar shape as that for 
radiation regression, which could be considered that the regression skill for VPD and 
radiation are at the similar level.    

 
Figure 19: The histogram of correlation coefficients of regression for extending VPD 
data from 2003 to 2007. The smooth line is the fitting by Wakeby method.  
 
(3.4.2) Daily data construction  
Once the monthly VPD data is available we could construct the daily data in the same 
way as for radiation, i.e. the daily values have to be controlled that it must be larger or 
equal to zero. if the calculated VPD is negative, it is forced zero. Figure 20 shows the 
MCRU’s VPD data (both from monthly and daily data) and the REMO’s VPD data. The 
REMO’s VPD has much larger values than MCRU’s VPD, though their temporal 
variations are quite similar.  
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Figure 20: The area weighted average of MCRU (green and dish lines) and REMO (red) 
vapor pressure deficit (VPD). The dish line is the weighted average from the constructed 
daily data.   
 
(3.4.3)Data comparison and annual variation 
REMO data showed larger VPD than CRU (MCRU) data set, however the CRU’s VPD 
has small difference with the corresponding data from ECMWF (ERA40 data) (figure 21). 
The ECHAM5 data shows the smallest VPD. Except for ECHAM5 data set, all other data 
sets show similar temporal variation of VPD.  
 

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

400

500

600

700

800

V
PD

 (P
a)

CRU
ECHAM5
ECMWF
REMO

 
Figure 21: The VPD data comparison with the area weighted average from CRU, 
ECHAM5, ECMWF, and REMO data sets respectively. 
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3.5 Relative Humidity 
 
The relative humidity (RHY) is generally not directly available from the climatic data 
sets.  RHY can be calculated  from temperature and dew point temperature (or from 
temperature and vapor pressure for CRU data case). Because … the calculated RHY 
reached over 400% for in some pixels of the CRU data. In this case the RHY was forced 
to 100%.  
 
(3.5.1) Regression validation 
  
The correlation coefficients of regression equations show much worse results for relative 
humidity than for other variables (figure 22). It means that there is a weak relationship 
between these data sets. When we extend the RHY for the time periods during 2003-2007, 
for quite a lot pixel it only takes the values from the multiple year average.   
 

 
Figure 22: The histogram of correlation coefficients of regression for extending RHY 
data from 2003 to 2007. The smooth line is the fitting by Wakeby method.  
 
(3.5.2) Daily data construction 
 
The daily data is constructed in the similar way as for VPD, but unlike the VPD data in 
which only the lower limit (zero) is constrained, both lower limit (zero) and higher limit 
(100) are constrained for RHY. Thus there is obvious mismatch in weighted average plot 
(figure 23) for the curves from raw monthly data and from constructed daily data. The 
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RHY from REMO data set (red curve) shows smaller values than one from MCRU data, 
nevertheless, the temporal variations of RHY from REMO and MCRU have many 
similarities.  
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Figure 23: The area weighted average of MCRU (green and dish lines) and REMO (red) 
relative humidity (RHY). The dish line is the weighted average from the constructed daily 
data.   
 
 

3.6 Cloudiness 
  
Since in the CarboEurope-IP project, only monthly cloudiness was required, we 
constructed only monthly cloudiness data.   
 
(3.6.1)Regression validation 
 
The cloudiness data was directly available from CRU data set. To extend the cloudiness 
data to the period from 2003 to 2007, a regression equation is employed. The regression 
result was the worse than result than temperature and precipitation (Figures 2 and 8) but 
better result than RHY (Figure 22).  
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Figure 24: The histogram of correlation coefficients of regression for extending 
cloudiness data from 2003 to 2007. The smooth line is the fitting by Wakeby method.  
 
(3.6.2)Data comparison and annual variation 
 
Although the radiation data for CRU and REMO are quite similar, the cloudiness of CRU 
and REMO are quite different (Figure 25). REMO data set shows the lowest cloudiness. 
The annual cloudiness from ECHAM5 has absolute values similar to CRU data set, but 
different inter-annual variability. Cloudiness from ECMWF has a bit smaller value, but 
similar temporal variation as the CRU data set.  
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Figure 25: The cloudiness data comparison with the area weighted average from CRU, 
ECHAM5, ECMWF, and REMO data sets respectively. 
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4. Climate characteristics shown by MCRU data set 

 
MCRU data set was produced for the CarboEurope-IP research project.  For the period 
from 1901 to 2002, MCRU and CRU variables are the same at a monthly scale. The daily 
variables of MCRU holds the characteristics of the daily datasets used for data 
combination, i.e. the characteristics of REMO and ECHAM5 daily data.  
 
The objective here is to analyze the climate trends in temperature and precipitation from 
MCRU dataset. 
 
In most of Europe temperature was increasing between 1901 and 2000. The exceptions 
are two small regions in southern Norway and Western Mediterranean sea (Figure 26). 
The negative trends in southern Norway region are however not significant at 95% 
confidence (Figure 26b).  

 
  
Figure 26: Trends in annual temperature (a) and the corresponding T-test (b), in which 
the area with only significant trends are plotted. For each pixel trends were calculated 
over 1901 and 2000. 
 
 
A clear positive trend (red curve) in European annual temperature is observed for the 
period from 1901 to 2000 (figure 27). The trend is 0.79 degree C per 100 years, the 
corresponding t test is 3.98, much larger than 1.96 (threshold at 95% confidence). For the 
period from 1901 to 2007 the trend is even stronger. In addition, two abrupt changes in 
temperature were detected at 1933 and 1987 respectively. 
 
 
 
 
 
 
 
 
 

a b 
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Figure 27: The area weighted average of MCRU temperature. It is showing a positive 
trend in temperatures for 1901 - 2000 (red line) and a much stronger trend for 1901 - 
2007 (green line).  
 
In comparison with the temperature trends, the area with significant trend for 
precipitation is much smaller (Figure 28a and b). Precipitation has positive trend in 
northern Europe and negative trend in southern Europe. Therefore, in southern Europe 
the climate is becoming warmer and drier, so that the drought may occur more often. 
 

 
 
Figure 28: The precipitation trends (a) and the corresponding T-test (b), in which the 
area with only significant trends are plotted. For each pixel trends were calculated over 
1901 and 2000. 
 
Annual precipitation of Europe also shows a positive trend for the period from 1901 to 
2000, but the trend is not significant with 95% confidence (Figure 29).  It is because that 
the positive trend in the north and negative trend in the south offset each other.  

a b
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Figure 29: The area weighted average of MCRU precipitation. It is showing a positive 
trend from 1901 to 2000 but not significant (red line) according to 95% confidence.  
 
 

5. Summary and conclusion  
 
There are two important aspects of any data: availability and accuracy. Although 
nowadays there are many different data sources, none of them could claim that its data 
has 100% accuracy. For any modeling however the data accuracy is important since the 
wrong data would lead to wrong modeling result and make it difficult to give the correct 
interpretation. Therefore, we attempt to develop an accurate data set for the ecosystem 
modeling. After a lots of data comparison, the CRU data at a monthly scale is considered 
to be relatively accurate. We generated the daily data based on the monthly CRU data as 
well, which is a typical work for weather generator (WG). Normally WG use many 
mathematic methods such as auto-regression, random number, Markov Chains, and 
probability transformation. Here we used an alternative method to generate daily data 
from monthly data, which we called data combination. The data combination uses the 
simple arithmetic methods. The important prerequisite for data combination is the daily 
data availability from other data sets. We used temporal variability and spatial 
consistence of data from different sources to compute daily climate variables. Therefore, 
the data combination is the type of method that is comparable to WG in result, but based 
on much simple mathematic methods. 
 
Nine climatic variables are needed to drive the ecosystem models. These variables could 
be classified in three groups:  
(1) Temperature related variables: 
Mean temperature; maximum and minimum temperature, daylight temperature 
(2) Humidity related variables: 
Precipitation, cloudiness, relative humidity and vapor pressure deficit 
(3) Radiation related variable:  
Surface solar radiation downwards 
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Based on the results of regression for climate data extended until 2007, we could classify 
the variables into four groups with decreasing regression performance: (1) temperature; 
(2) precipitation; (3) cloudiness, radiation and vapor pressure deficit; (4) relative 
humidity. 
 
Here we didn’t describe the maximum and minimum temperature, as well as the daylight 
temperature since all these temperature-related variables have the similar result to the 
daily mean temperature in the aspect to regression and daily data construction. Generally 
various data sets have comparable temperatures. The data consistence for other variables 
is worse.  
 
The analysis of the trends in temperature and precipitation data indicates that there is a 
positive temperature trend for most areas of Europe with stronger positive trends in the 
south than in the north. Precipitation has positive trend in the north and negative trend in 
the south. We conclude that in southern Europe the drought will become more and more 
serious in the future. However, in northern Europe the warmer temperature and more 
precipitation could benefit the vegetation growth . 
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