Determination of compound-specific isotope ratios

Gerd Gleixner

Max-Planck-Institut für Biogeochemie, Jena

Molecular composition of cells

Table 1. Overall macromolecular composition of an average E. coli B/r cella

Macromolecule	Percentage of total dry weight	Weight per cell (10 ¹⁵ × weight, grams)	Molecular weight	Number of molecules per cell	Different kinds of molecules
Protein	55.0	155.0	4.0×10^{4}	2,360,000	1,050
RNA 23S rRNA 16S rRNA 5S rRNA transfer messenger	20.5	59.0 31.0 16.0 1.0 8.6 2.4	$\begin{array}{c} 1.0 \times 10^6 \\ 5.0 \times 10^5 \\ 3.9 \times 10^4 \\ 2.5 \times 10^4 \\ 1.0 \times 10^6 \end{array}$	18,700 18,700 18,700 205,000 1,380	1 1 60 400
DNA	3.1	9.0	2.5×10^{9}	2.13	1
Lipid	9.1	26.0	705	22,000,000	4^{b}
Lipopolysaccharide	3.4	10.0	4346	1,200,000	1
Murein	2.5	7.0	(904),	1	1
Glycogen	2.5	7.0	1.0×10^{6}	4,360	1
Total macromolecules	96.1	273.0			
Soluble pool building blocks metabolites, vitamins	2.9	8.0 7.0 1.0			
Inorganic ions	1.0	3.0			
Total dry weight	100.0	284.0			
Total dry weight/cell Water (at 70% of cell)		2.8×10^{-13} g 6.7×10^{-13} g			
Total weight of one cell		9.5×10^{-13} g			

⁶In balanced growth at 37°C in glucose minimal medium, mass doubling time, g, of 40 minutes. The data are assembled from Dennis and Bremer (1974), Maaløe (1979), F. C. Neidhardt (unpublished), Roberts et al. (1955), and Umbarger (1977).

^bThere are four classes of phospholipids, each of which exists in many varieties as a result of variable fatty acyl residues.

Intermolecular variations in ¹³C composition

Sample Size for δ^{13} C Analyses

Noise limits

Merritt,93

GC-IRMS for C, N and H

- Gas chromatographic separation
- Conversion of compounds
- Water removal
- Coupling to IRMS

GC/MS-IRMS

The Gas Chromatograph System

Column- the heart of separation

Säulentypen

- Gepackte Säule (innerer Durchmesser 1-4 mm, Länge 1-5 m)
- Kapillarsäule (porous-layer open tubular, PLOT; support-coated open tubular, SCOT; wall-coated open tubular, WCOT; innerer Durchmesser 0.15–0.53mm, Länge 10-100 m)

Vergleich zwischen Kapillarsäule und gepackter Säule:

	Gepackte Säule	Kapillarsäule
Länge (m)	1 – 5	10 – 100
Innendurchmesser (mm)	1 – 4	0.1 - 0.5
Theoretische Bodenzahl per Meter	500 - 1000	2000 - 4000
Probemengen	ng – mg	< 10 ng

Säulentypen

Stationäre Phasen

Capillary Column Chromatography

Separation power depends on:

chemistry of compounds chemistry of bonded phase temperature and flow programs

Chromatographic separation

Multiple distribution of compounds in non mixing phases

Peak resolution

Gas Chromatogram

1

Resolution = $\Delta t / w$

Column Flow

Linear flow rate

Resolution

Temperature

Isothermal

(constant temperature)

Temperature Programmed

(increasing temperature)

Gas flow in a capillary tube:

Poiseulle Equation

flow rate (mL/min) = $\frac{k r^4 \Delta P}{l\eta}$

k = constant r = capillary radius (cm) ΔP = pressure gradient (dynes/cm) l = capillary length (cm) η = viscosity (dyne-sec/cm²)--*increases with temperature* Gas flow in a capillary tube:

Poiseulle Equation

flow rate (mL/min) = $\frac{k r^4 \Delta P}{l\eta}$

k = constantr = capillary radius (cm) $\Delta P = pressure gradient (dynes/cm)$ l = capillary length (cm) $\eta = viscosity (dyne-sec/cm²)--increases withtemperature<math>= flow rate drops$

Säulenüberladung

Conversion

 $\Delta T, O_2$

 $y CO_2 + x/2 H_2O$

¹³C/¹²C irm-GCMS

At 1000 C w/O₂:

Water removal

Open Splits

Compound-Specific ¹³C Analyses

- •Good chromatographic separation
- •internal and external standards
- •N can interfere with C analysis (N2O, NO2 have m/e 44, 46)
- •Correction for derivatization of functional groups (methyl esters, TMS ethers, etc.)

A "typical" chromatogram

A real chromatogram

Precursor	Pyrolysis Products
Carbohydrate	Acetic Acid, Furanes
Protein	Nitriles, Pyrroles
Lignin	Phenols

Nitrogen isotopes in GC-IRMS

Oxidation at 1000° C:

- CuO oxidizes Pt and Ni
- PtO and NiO produce O_{2 for combustion}
- $CNH_2 + O_2 ---> CO_2 + NO_x + H_2O$

Reduction at 650° C:

• $NO_x + Cu - N_2 + CuO$

Nitrogen GC-IRMS

Hydrogen GC-IRMS

- Reductive furnace
- Electrostatic lens for m/z 3 cup in MS (removes tail from ⁴He)
- H₃⁺ factor

Hydrogen GC-IRMS

Operation Modes

H_3^+ factor

- In ion source H_3^+ is formed from H_2 : $H_2^+ + H_2 --> H_3^+ + H$
- H₃⁺ is isobaric with HD:
 m/z 3 = H₃⁺ + HD
- Abundance of H₂⁺ proportional to [H₂] Reaction is second order with [H₂]: [H₃⁺]=k [H₂]²

Determination of H₃⁺ factor

 Run a series of reference gas pulses, varying gas pressure

Determination of H₃⁺ factor

- Determine H₃⁺ factor from relationship of peak height vs. R (m/z 3/2 ratio)
- Slope = H_3^+ factor
- Intercept = 3/2 ratio of gas
- Relatively large correction (10's per-mil)

Isotope ratio analysis

GC-Combustion for volatile compounds

However, not for compounds with High molecular weigth High polarity Thermal instability

Isotope ratio analysis

Classic System (LC+irMS)

O_2 background to measured $\delta^{13}C$ values of reference gas pulse

Traps

- Water trap
 - Long capillare
 - Dry ice

- Oxygen trap
 - -580° C
 - 2 ceramic tubes filled with Cu wire
 - 8 port valve

O₂ background

Accuracy of the system

Isolation of plant metabolites

Molecular Biogeochemistry

Gerd Gleixner

Max-Planck-Institut für Biogeochemie, Jena

Natural Labeling Experiment

 δ^{13} C » -25°/₀₀

δ¹³C » -12°/₀₀

Precursor	Pyrolysis Products
Carbohydrate	Acetic Acid, Furanes
Protein	Nitriles, Pyrroles
Lignin	Phenols

Turnover Time of Soil Pyrolysis Products

Gleixner et al., Org. Geochem. 2002

PLFA - Phospholipid fatty acids

Compound specific ¹⁴C ages

Natural Double Labeling Experiment

Site 1: High ¹⁴C content

Site 2: Low ¹⁴C content

¹³C indicates plant carbon¹⁴C indicates soil carbon

Carbon sources of microorganisms

plant carbon [%]

Kramer & Gleixner, 2006

Tracing carbon into the microbial community

Malik, Front. Microb. 2015

Consequences of living soil

- $C = C_0 e^{kt}$ physical/chemical decay
- $S + E \leftrightarrow ES \rightarrow E + P$

biological decomposition

V = V_{max}[S] / K_M + [S]

Don et al, 2015

High life in soil

Carbon distribution

300

Age distribution

Relative respiration rate

Hydrogen Isotope European Tour 2002

feat. Research Vessel "Tante Käthe"

Terrestrial climate archives

Deuterium in Precipitation

δD values of n-alkanes in modern lake sediments

Sachse et al. (2004) GCA 68(23)

Deuterium in Precipitation

Extended Calibration

ASIAN MONSOON

Franziska Günther, Roman Witt, Andrej Thiele, Jeetrendra Saini, Chuanfang Jin

Large Scale Circulation Reconstuction

Günther, QSR 2015

Thank you

Acknowledgement

- C. Kramer, N. Poirier, A. Börner, S. Grüning, V. Hahn, O. Kracht, B. Lühker, I. Mügler, J. Radke, J. Rothe, S. Rühlow, D. Sachse, S. Steinbeiß, A. Telz, A. Thiele, M. Wengel and M. Werner, MPI Biogeochemistry, Jena
- Zentrale Analytik and Isolab, MPI Biogeochemistry, Jena
- Kate Freeman, Penn State University, USA
- P. Grootes and J. Rethemeyer, Leibnitz Institute, Kiel
- M. Rubino, F. Cotrufo, 2nd University of Naples, I
- R. Bol, Institute of Grassland and Environmental Research, UK
- J. Balesdent, Laboratoire d'Ecologie Microbienne de la Rhizosphere, F
- T. Yao, B. Xu, G. Wu, Inst. Tibetean Plateau Research CAS, CH
- DFG-SPP "Refractory Organic Acids in Water. and DFG-SPP 1090 "Soils as sink or source for atmospheric CO₂. for financial support Project Gl 262/1 and Gl 262/4, SPP 1054 "Paläozoic Climate", FOR 468 "Biodiversity"
- European Commission for a Marie Curie fellowship to N. Poirier
- ESF for travel grant to M. Rubino

Nach Kerr (2000) Science 288:589

Strahlungsschema der Erde

WBGU Bericht, 1988

Greenhouse gases

Gas		Temp. effect [°C]
Water vapour	H ₂ O	12,8
Carbon dioxide	CO_2	4,4
Ozone	O ₃	1,5
Methane	CH_4	0,5
Nitrous oxide	N_2O	0,8

Terrestrial Carbon Cycle

Gleixner et al., 2001

Soil organic matter

- What we know
- The role of plant components
- Function of soil organisms
- Conclusions

Soil carbon and roots

Physical Stabilization

Chemical Stabilization

Biomacromolecules	Occurrence	"Preservation potential"
Cellulose	Vascular plants, some	- / +
	fungi	
Chitin	Arthropods, copepods,	+
	crustacea, fungi, algae	
Lignins	Vascular plants	+ + + +
Tannins	Vascular plants, algae	+ + + / + + +
Hydrocarbons	Vascular plants, algae	+ + + +
Proteins	All organisms	— / +
Phospholipids	Plants, algae, bacteria	_ / +

¹⁴C Age of Soil Organic Matter

soil		¹⁴ C age in years (y)	
		top soils	deeper horizonts
peaty gley	British Uplands	modern	10190
podzol	British Uplands	modern	3770
acid brown earth	British Uplands	modern	4630
forest	Brazil	modern	9340
forest	California	386	2193
forest	Midwestern US	422	1712
prairie	Iowa	1072	6272
grasland	Midwestern US	1100	6100
desert	California	19897	21135

Soil carbon models

Stability of soil organic matter

- SOM content is related to input and output
- Stability of SOM is related to chemical and physical properties
- High ¹⁴C ages of SOM support the importance of stabilization mechanisms
- Carbon models suggest three pools with annual, decadal and millennium turnover

Soil organic matter

- What we know
- The role of plant components
- Function of soil organisms
- Conclusion

Soil organic matter

- What we know
- The role of plant components
- Function of soil organisms
- Conclusion

Microbial Carbon Sources

C3 C4 Vegetation Change

Gleixner et al., 2004

MRT of PLFA

¹⁴C ages of PLFA

Kramer et al., 2004

Conclusion

Microbes don't read books

Soil characteristics of two agricultural sites

	Halle		Rotthalmünster	
Soil type	Haplic Phaeozem		Haplic Luvisol	
Bulk-SOM				
C-content [%]	1.3		1.4	
N-content [%]	0.15		0.075	
рМС	54		107	
pMC of SOM-Fractions				
humin / humic acid	30 / 47		106 / 102	
total lipids	46		103	
phospholipids	58		107	
Density fractions	yield OC [%]	рМС	yield OC [%]	рМС
fPOM	~ 8	~ 47	~ 3	~ 104
oPOM _{<1.6}	~ 3	~ 8	~ 0.5	~ 98
oPOM _{1.6-2.0}	~ 16	~ 25	~ 10	~ 104
mineral	~ 62	~ 59	~ 87	~ 104

John.et al. (2005); Kramer (2004); Rethemeyer et al.; (2005)

Carbon sources of microorganisms

Conclusion

- ¹⁴C age of carbon is not equivalent to molecular stability, i.e. molecules are newly synthesised using ¹⁴C old carbon
- Soil microbes use all available carbon sources, however, some preferences are visible
- Some carbon source are still unknown, probably CO2 or CH4

Soil carbon models

Soil carbon models

t [a]

Paläoclimatology

- Why Deuterium ?
- Why terrestrial archives ?
- Establishing a new climatic proxy
- Case study "third pole"

Deuterium in Precipitation

Vostok Icecore

PETIT et al. (1999) Nature, 399, 429-436.

Low Latitude Ice cores

Location of the most important stable isotope records from tropical ice cores:

- Chimborazo (Francou, 2000, pers. comm.)
- Quelccaya (Thompson et al., 1984)
- Sajama (Thompson et al., 1998)
- Dasuopu (Thompson et al., 2000b)
- Dunde (Thompson et al., 1989).

- Huascarán (Thompson et al., 1995)
- Illimani (Hoffmann et al., 2002)
- **G** Kilimanjaro (Thompson et al., 2002)
- Guliya (Thompson et al., 1997)

(from: M. Vuille, pers. comm.)

Why trerrestrial archives ?

Deuterium content of Biomarkers

Advantages of n-alkanes:

- no exchangeable hydrogen (all H is carbon bound)
- different biological sources
- resistant, therefore abundant in sediments from the geological past
- relatively easy to extract and purify

Nam Co, Tibetean Plateau

Monsoon dynamics

Overview of the study area, Lake Nam Co, Central Tibet. The esllipses mark the sediment sampling locations. (map source: Google Earth, http://earth.google.com)

Lake Nam Co, the second largest (1961 km²) saline lake of the Tibetan Plateau is located in its central part (Fig. 2). The climate in this region is continental with low mean annual temperatures around -1° to + 3° and low precipitation amounts of 300-500 mm occurring mainly in the summer months during the monsoonal rains. Due to strong radiation annual evaporation (2465 mm) exceeds the annual precipitation.

Isotopic offset between aquatic and terrestrial n-alkanes δD values of Lake Holzmaar (humid) and Lake Nam Co (arid) sediments

Compound specific D content of biomarkers reconstructs paleohydrology

