Atmospheric constraints on greenhouse gas budgets: Requirements on Modelling tools based on multiple observations

Christoph Gerbig Max-Planck-Institute for Biogeochemistry

Acknowledgements: Ravan Ahmadov, Stefan Körner, K. Dhanyalekshmi, Roberto Kretschmer, Huilin Chen, Jan Winderlich, Julia Steinbach, Rona Thompson, Kristina Trusilova, Christian Rödenbeck, Martin Heimann

Jena

CERES (Han Dolman, ...) many CEIP Fluxtower PIs

> **EPFL Lausanne** May 4, 2008

- Motivation
- Model-data-fusion system
- Test data:
 - Tall tower measurements
 - CERES (CarboEurope regional Experiment)
- associated uncertainties, and possibilities for mitigation
- Closing remarks

Motivation

Scientific questions:

- Where and by which processes is anthropogenic CO₂ sequestered?
- What are the main feedback processes between carbon cycle and climate system?
- What is the carbon budget of a specific region (continent/country)?

Variable "Airborne fraction"

Estimating Reginal Carbon Balances: Top-Down vs. Bottom-Up Approach

Estimating Reginal Carbon Balances: Top-Down vs. Bottom-Up Approach

Tall Towers

Atmospheric Observing System

Aura

Satellites

FTIR: Fourier Transform Infrared

OCO

0CO 1:15

ZOTTO (Zotino Tall Tower O Central Siberia

Atmospheric Observing System ~1 decade ago: only remote sites

Motivation

CO₂ in the continental atmospheric boundary layer:
Variability on diurnal and synoptic scales
=> Information on surface fluxes

Harvard Forest
hourly values
midday values

- -10 day medians
- Mauna Loa
- Bermuda

[Gerbig et al., 2006]

Estimating Reginal Carbon Balances: Top-Down vs. Bottom-Up Approach

The challenge: we need ...

- Model-data fusion
 - merging Top-Down and Bottom-Up
- Test data, to assess models capability
 - Experiments with high density observations (space & time) -> CERES
- Falsifiable models
 - scalable from experiment scale to scale of interest
 - quantitative (error bars)

VPRM Vegetation Photosynthesis and Respiration Model [Pathmathevan et al., GBC 2008] ion vegetati Jasses **Optimization of parameters** α , β , λ , and PAR₀ **SYNMAP** land cover [Jung et al., 2006] NEE_st [umol m⁻² s⁻¹] $NEE = GEE + R \longleftarrow = \alpha \cdot T + \beta$ **ECMWF, NCEP, WRF** or site measurements PAR $-\cdot T$ scale $(T) \cdot P$ scale $(LSWI, EVI) \cdot W$ scale $(LSWI) \cdot EVI$ $\overline{(1 + PAR/PAR_0)}$ **MODIS surface reflectances** Eddy Cov. data 8 day, 500 m

[many CE site Pl's]

VPRM biospheric CO₂ fluxes

WRF-VPRM

CO₂ (-366 ppm) at 150 m

Net Ecosystem Exchange, time 2003-07-02_01:00:00

Vegetation-Photosysthesis and Respiration Model, created at MPI-BGC

CO2 at 0.1 km, time 2003-07-02_00:00:00

WRF+CASA+VPRM, created at MPI-BGC

VPRM biospheric CO₂ fluxes

WRF-VPRM

column CO₂ (-366 ppm)

Net Ecosystem Exchange, time 2003-07-02_01:00:00

Vegetation-Photosysthesis and Respiration Model, created at MPI-BGC

column average CO2, time 2003-07-02_00:00:00

WRF+CASA+VPRM, created at MPI-BGC

Model-Data Comparison Global model - Biscarosse coastal station

050527b CO2 050527b CO2.WRF S S N ~i WRF-VPRM Measurement 2.0 2.0 385 CO2 [ppm] altitude [km] 1.0 1.5 altitude [km] .0 1.5 28 375 S Ю ö 300 500 700 100 300 700 0 100 0 500 cumulative distance [km] cumulative distance [km] 050527b 45.0 Bordeaux 44.8 44.6 500[°] km LAT 44.4 400 km 200 km 300 km 44.2 MetAir Eco-Dimona 44.0 43.8

> -0.5 LON

0.0

-1.0

-1.5

CO2.WRF [ppm]

375

VPRM vs. Aircraft data

WRF-

Respired CO2 signal 10 ppm surface

Mesoscale covariance of transport and CO2 fluxes "3D rectifier effect"

STILT-VPRM

IER + EDGAR CO2 fossil emissions

ы Ш

မှ မ

- Stochastic Time Inverted Lagrangian Transport
- ECMWF winds + turbulence + convection
- Resolution: 1/12° x 1/8° $(\sim 10 \times 10 \text{ km}^2)$
- **Biosphere: VPRM**
- **Emissions**: IER (Hourly, 10 km) + EDGAR
- Lateral boundary condition: • analyzed CO₂ fields (TM3 + Edgar + Takahashi + Biome-BGC)

STILT-VPRM

STILT @ Tall Tower

Bialistok tall tower footprints

Bialystok tall tower

Sep 06 Bialystok 300 m level

BIK Measurements – STILT VPRM

Aug 05 - Oct 06 Bialystok 300 m

STILT @ Tall Tower

tall tower

Bialystok

Bialistok tall tower footprints

- 8 tall towers (> 100 m) in Europe instrumented with continuous profile measurements
- · Optimize VPRM using STILT
- => Regional scale hourls fluxes at 10 km resolution

Source of uncertainty	Туре	Magnitude	Reference
	Advection		
Transport Model	PBL mixing	w	inds uncertain +
	Convection	spat	ial flux variability =
Transport Model + Flux Model	Grid resolution	mixin	g ratios uncertain
Flux Model	Aggregation		
Measurement	Precision, accuracy		

Source of uncertainty	Туре	Magnitude	Reference
	Advection	~ 5 ppm (summertime)	Lin and Gerbig, 2005
Transport Model	PBL mixing	win	nds uncertain +
	Convection	spatia	al flux variability =
Transport Model + Flux Model	Grid resolution		y ratios uncertain
Flux Model	Aggregation	der ECMWF	rived z _i with fields derived z _i
Measurement	Precision, accuracy		

Source of uncertainty	Туре	Magnitude	Reference
Transport Model	Advection	~ 5 ppm (summertime)	Lin and Gerbig, 2005
	PBL mixing	~ 5 ppm (summertime)	Gerbig et al, 2007
	Convection	mixing	height uncertain
Transport Model + Flux Model	Grid resolution	mixing	= ratios uncertain
Flux Model	Aggregation	der ECMWF	rived z _i with fields derived z _i
Measurement	Precision, accuracy		

Source of uncertainty	Туре	Magnitude	Reference
	Advection	Spatial st (sur multiple	atistics of pig, e profile
Transport Model	PBL mixing	(COBRA ex	xperiments)
	Convection		
Transport Model + Flux Model	Grid resolution	~ 1 ppm @ 200 km (summertime)	Gerbig et al., 2003
Flux Model	Aggregation		
Measurement	Precision, accuracy		

Source of uncertainty	Туре	Magnitude	Reference
	Advection	~ 5 ppm (summertime)	Lin and Gerbig, 2005
Transport Model	PBL mixing	~ 5 ppm	Gerbig et al,
Convection e	experiment, priori covaria	, varying a-	
Transport Model + Flux Model	Grid resolution		ale al.,
Flux Model	Aggregation	depending on Aggregation and Model	Gerbig et al., 2006
Measurement	Precision, accuracy		

"Eyesight of the atmosphere" Reduction in flux uncertainty, spatially resolved, as function of a-priori covariance length scale

cov. scale 10 km

cov. scale 100 km

larger a priori covariance scales

=>

larger scale "information"

Need good knowledge about prior uncertainty + covariance! [Gerbig et al., ACP 2006]

Source of uncertainty	Туре	Magnitude	Reference
	Advection	~ 5 ppm (summertime)	Lin and Gerbig, 2005
Transport Model	PBL mixing	~ 5 ppm (summertime)	Gerbig et al, 2007
	Convection	?	
Transport Model + Flux Model	Grid resolution	~ 1 ppm @ 200km (summertime)	Gerbig et al., 2003
Flux Model	Aggregation	depending on Aggregation and Model	Gerbig et al., 2006
Measurement	Precision, accuracy	0.1 ppm (targeted)	WMO

Mitigation?

Modifying some measurement strategies ...

PBL mixing problem

- Add a device to monitor mixed layer height
 - e.g. Ceilometer (operational at many airports and weather stations, globally ~5000)
 - · Cheap LIDAR
 - Continuous observation of cloud base, but also vertical profile of backscatter up to 7.5 km possible

Regular vertical profiles: Aircraft

IAGOS (Integration of routine <u>Aircraft measurements into a</u> <u>Global Observing System</u>)

Predecessor (1993-2004):

MOZAIC (<u>Measurement of Oz</u>one and Water Vapour by <u>A</u>irbus <u>I</u>n-Service Air<u>c</u>raft)

Regular vertical profiles: Aircraft

IAGOS: From MOZAIC to Sustainability

IAGOS (Integration of routine Aircraft measurements into a Global Observing System)

MOZAIC Sensor for Luthansa

Ozone Water Vapour Nitrogen Oxides Carbon Monoxide

> CO₂ instrument, Luthansa certified

> > Max-Planck-Institut für Biogeochemie

MPI-BGC Jena

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Picarro CRDS system

SBIR (Small Business Innovation Research) project with Picarro & NOAA

- Modifications to ensure stability
- Size/weight reduction
- Repackaging & Certification
- First deployment in 2011, up to 7 A340 aircrafts

Specification	Value
CO ₂ Precision	< 100 ppbv
CH ₄ Precision	< 1 ppbv
H ₂ O Precision	< 50 ppmv
Measurement Speed	< 1 second
Drift (30 hours)	< 150 ppbv

Regular vertical profiles: FTIR Validation of FTIR column retrievals for CO₂ against CERES aircraft data

Closing remarks

- Model-data-fusion:
 - Merging bottom-up and top-down is required, otherwise both are underconstrained at relevant scales
- High resolution information from intensive campaigns:
 - important for model validation
- Mesoscale modelling with WRF-VPRM:
 - VPRM captures NEE on relevant spatial and temporal scales
 - WRF-VPRM captures main mesoscale transport features
- Models aren't perfect, and they will never be.
 - reduction and characterization of uncertainties is required
 - representation error: not necessarily random
 - mesoscale modeling required to bridge the gap to global models
 - aggregation error: specification of a priori uncertainty and covariances needed (may be solve for?)

Closing remarks II

- Transport: modified measurement strategy can help
 - PBL height: additional measurements needed near towers, assimilation into transport fields
 - Vertical mixing: regular vertical profiling

→ IAGOS, FTIR, OCO, GOSAT

 To utilize long term & large scale information from mixing ratio observations, we first need to model (or parameterize) the short term & small scale with minimal bias

