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Overview
* Introduction
- From model uncertainty to network components

~* Covering the 3rd dimension: Vertical profile
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ren Transcom models compared to airborne profile measurements:
... N0 single model captures both the seasonal and annual- re
mean observed gradients accurately®

[Stephens et al., Science 2007]
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ECMWF temperature profiles compared to radiosonde data:

The uncertainty ,was on average 3.5 ppm, or 30% of the

simulated CO2 from biospheric fluxes ... expected for a relative —
uncertainty in mixing heights of 40%"

[Gerbig et al., ACP 2008]
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Vertical transport uncertainty
- monitor mixing height

+ Ceilometer (operational at
many airports and weather
stations, globally ~5000)
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Vertical transport uncertainty
- monitor profiles of tracers

 Remote sensing of columns
FTIR
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Vertical transport uncertainty

- monitor profiles of tracers
« Validating FTIR — column measurements

— Airborne profiles

— Comparison with tower data, usmg STILT as I|nk
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Vertical transport uncertainty
- monitor profiles of tracers

 Remote sensing of columns
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IAGOS (Integration of routine Aircraft measurements

Into a Global Observing System)

IAGOS: FP6 design study
IAGOS-ERI: European research infrastructure
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Picarro CRDS system
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Research) project with Picarro &
NOAA

- Modifications to ensure stability

- Size/weight reduction

- Repackaging & Certification

- First deployment in 2011, up to 7

Prime candidate for FTIR yalidation within IMECC JRA 2

] Fig. courtesy of Colm Sweeney, NOAA
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Allan Variance (%)

Piccaro tests at MPI

PICARRO CO2 Allan Variance
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Piccaro tests at MPI

PICARRO CH 4 Allan Variance
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Piccaro ;es'rs at MPI
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| Dewpoint after correction after correction
| (dilution and p-broadening) (dilution only)

0°C 0 ppm 0.5 ppb

5°C 0 ppm 1.0 ppb

10 °C 0 ppm 1.5 ppb

15 °C 0.2 ppm 1.75 ppb
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The bigger H,O issue: transient effects on wet walls of inlet tubing
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The true footprint of atmospheric measurements:
which signal comes from which distance?

Model:

STILT + GSB

(high res. atm.
transport
+

LUE model)
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The true footprint of atmospheric measurements

contributions to biospheric CO, by distance
3-hourly data

Model:

STILT + GSB

(high res. atm.
transport
+

LUE model)
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Contributions to biospheric CO2 time series from different distances



The true footprint of atmospheric measurements

contributions to biospheric CO, by distance
15:00 only (,well-mixed afternoon®)

Model:

STILT + GSB

(high res. atm.
transport
+

LUE model)

Contributions to biospheric CO2 time series from different distances
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The true footprint of atmospheric measurements
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"Near-field problem”

* Good characterization of near field
required
- Flux stations in near field for better synergy

- Remote sensing
- Vegetation spectral reflectances
* Vegetation structure (airborne Scanning Lidar)

- Additional short towers in near-field?

=> Better prior flux information for near
field than elsewhere



Closing remarks

» Taking into account model error:

- Important for design of the network and its elements

- Without this we might end up with a system that can not
constrain budgets and climate - carbon cycle feedback on
relevant scales

» Vertical fransport uncertainty:

- Is large in current generation models

- Add observational constraints (Ceilometer)

- Compensate by using profile information (example:
TAGOS-ERI)

- Picarro tests at MPI: promising technology, also for
airborne

* The "near fiel problem":
- Needs to be addressed.
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