Atmospheric Remote Sensing
Airborne trace gas measurements and mesoscale modelling
Inverse data-driven estimation
Integrating surface-atmosphere Exchange Processes Across Scales - Modeling and Monitoring
Tall Tower Atmospheric Gas Measurements
Carbon Cycle Data Assimilation
Satellite-based remote sensing of greenhouse gases
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
accepted
discussions
1 | Becker, M., Olsen, A., Landschützer, P., Omar, A., Rehder, G., Rödenbeck, C., Skjelvan, I. (2021). The northern European shelf as an increasing net sink for CO2. Biogeosciences, 18(3), 1127-1147. doi:10.5194/bg-18-1127-2021.![]() |
2 | Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z., Papale, D., et al. (2021). FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 13(7), 3607-3689. doi:10.5194/essd-13-3607-2021.![]() |
3 | Dogniaux, M., Crevoisier, C., Armante, R., Capelle, V., Delahaye, T., Cassé, V., Mazière, M. D., Deutscher, N. M., Feist, D. G., Garcia, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Pollard, D. F., Roehl, C. M., Shiomi, K., Strong, K., Té, Y., Velazco, V. A., Warneke, T. (2021). The Adaptable 4A Inversion (5AI): description and first XCO2 retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations. Atmospheric Measurement Techniques, 14(6), 4689-4706. doi:10.5194/amt-14-4689-2021.![]() |
4 | Franz, M., Zaehle, S. (2021). Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial carbon uptake and storage, 1850–2099. Biogeosciences, 18(10), 3219-3241. doi:10.5194/bg-18-3219-2021.![]() |
5 | Galkowski, M., Jordan, A., Rothe, M., Marshall, J., Koch, F.-T., Chen, J., Agusti-Panareda, A., Fix, A., Gerbig, C. (2021). In situ observations of greenhouse gases over Europe during the CoMet 1.0 campaign aboard the HALO aircraft. Atmospheric Measurement Techniques, 14(2), 1525-1544. doi:10.5194/amt-14-1525-2021.![]() |
6 | Irvin, J., Zhou, S., McNicol, G., Lu, F., Liu, V., Fluet-Chouinard, E., Ouyang, Z., Knox, S. H., Lucas-Moffat, A., Trotta, C., Papale, D., Vitale, D., Mammarella, I., Alekseychik, P., Aurela, M., Avati, A., Baldocchi, D., Bansal, S., Bohrer, G., Campbell, D. I., Chen, J., Chu, H., Dalmagro, H. J., Delwiche, K. B., Desai, A. R., Euskirchen, E., Feron, S., Göckede, M., Heimann, M., Helbig, M., Helfter, C., Hemes, K. S., Hirano, T., Iwata, H., Jurasinski, G., Kalhori, A., Kondrich, A., Lai, D. Y. F., Lohila, A., Malhotra, A., Merbold, L., Mitra, B., Ng, A., Nilsson, M. B., Noormets, A., Peichl, M., Rey-Sanchez, A. C., Richardson, A. D., Runkle, B. R. K., Schäfer, K. V. R., Sonnentag, O., Stuart-Häentjens, E., Sturtevant, C., Ueyama, M., Valach, A. C., Vargas, R., Vourlitis, G. L., Ward, E. J., Wong, G. X., Zona, D., Alberto, M. C. R., Billesbach, D. P., Celis, G., Dolman, H., Friborg, T., Fuchs, K., Gogo, S., Gondwe, M. J., Koebsch, F., Kasak, K., Maier, R., Morin, T. H., Nemitz, E., Oechel, W. C., Oikawa, P. Y., Ono, K., Sachs, T., Sakabe, A., Schuur, E. A., Shortt, R., Sullivan, R. C., Szutu, D. J., Tuittila, E.-S., Varlagin, A., Verfaillie, J. G., Wille, C., Windham-Myers, L., Poulter, B., Jackson, R. B. (2021). Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 308-309: 108528. doi:10.1016/j.agrformet.2021.108528. |
7 | Krautwurst, S., Gerilowski, K., Borchardt, J., Wildmann, N., Galkowski, M., Swolkien, J., Marshall, J., Fiehn, A., Roiger, A., Ruhtz, T., Gerbig, C., Necki, J., Burrows, J. P., Fix, A., Bovensmann, H. (2021). Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the Methane Airborne MAPper (MAMAP) instrument during the CO2 and Methane (CoMet) campaign. Atmospheric Chemistry and Physics, 21(23), 17345-17371. doi:10.5194/acp-21-17345-2021.![]() |
8 | Noël, S., Reuter, M., Buchwitz, M., Borchardt, J., Hilker, M., Bovensmann, H., Burrows, J. P., Noia, A. D., Suto, H., Yoshida, Y., Buschmann, M., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Podolske, J. R., Pollard, D. F., Sha, M. K., Shiomi, K., Sussmann, R., Té, Y., Velazco, V. A., Warneke, T. (2021). XCO2 retrieval for GOSAT and GOSAT-2 based on the FOCAL algorithm. Atmospheric Measurement Techniques, 14(5), 3837-3869. doi:10.5194/amt-14-3837-2021.![]() |
9 | Panov, A. V., Prokushkin, A. S., Zrazhevskaya, G. K., Urban, A. B., Zyryanov, V. I., Sidenko, N. V., Heimann, M. (2021). Winter CO2 fluxes in ecosystems of Central Siberia: Comparative estimates using three different approaches. Russian Journal of Ecology, 52, 126-135. doi:10.1134/S1067413621020090. |
10 | Panov, A., Prokushkin, A., Kübler, K., Korets, M., Urban, A., Bondar, M., Heimann, M. (2021). Continuous CO2 and CH4 observations in the coastal arctic atmosphere of the Western Taimyr Peninsula, Siberia: The first results from a new measurement station in Dikson. Atmosphere, 12(7): 876. doi:10.3390/atmos12070876.![]() |
11 | Park, S.-B., Knohl, A., Migliavacca, M., Thum, T., Vesala, T., Peltola, O., Mammarella, I., Prokushkin, A., Kolle, O., Lavric, J. V., Park, S. S., Heimann, M. (2021). Temperature control of spring CO2 fluxes at a coniferous forest and a peat bog in Central Siberia. Atmosphere, 12(8): 984. doi:10.3390/atmos12080984.![]() |
12 | Park, S.-I., Yang, H. I., Park, H.-J., Seo, B.-S., Jeong, Y.-J., Lim, S.-S., Kwak, J.-H., Kim, H.-Y., Yoon, K.-S., Lee, S.-M., Choi, W.-J. (2021). Rice straw cover decreases soil erosion and sediment-bound C, N, and P losses but increases dissolved organic C export from upland maize fields as evidenced by delta13C. Science of the Total Environment, 753: 142053. doi:10.1016/j.scitotenv.2020.142053. |
13 | Sha, M. K., Langerock, B., Blavier, J.-F.-L., Blumenstock, T., Borsdorff, T., Buschmann, M., Dehn, A., De Mazière, M., Deutscher, N. M., Feist, D. G., García, O. E., Griffith, D. W. T., Grutter, M., Hannigan, J. W., Hase, F., Heikkinen, P., Hermans, C., Iraci, L. T., Jeseck, P., Jones, N., Kivi, R., Kumps, N., Landgraf, J., Lorente, A., Mahieu, E., Makarova, M. V., Mellqvist, J., Metzger, J.-M., Morino, I., Nagahama, T., Notholt, J., Ohyama, H., Ortega, I., Palm, M., Petri, C., Pollard, D. F., Rettinger, M., Robinson, J., Roche, S., Roehl, C. M., Röhling, A. N., Rousogenous, C., Schneider, M., Shiomi, K., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., Uchino, O., Velazco, V. A., Vigouroux, C., Vrekoussis, M., Wang, P., Warneke, T., Wizenberg, T., Wunch, D., Yamanouchi, S., Yang, Y., Zhou, M. (2021). Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmospheric Measurement Techniques, 14(9), 6249-6304. doi:10.5194/amt-14-6249-2021.![]() |
14 | Sierra, C., Crow, S. E., Heimann, M., Metzler, H., Schulze, E. D. (2021). The climate benefit of carbon sequestration. Biogeosciences, 18(3), 1029-1048. doi:10.5194/bg-18-1029-2021.![]() |
15 | Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J., Ciais, P., Craig, M. E., Ellsworth, D., Farquhar, G., Fatichi, S., Fisher, J. B., Frank, D., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F., Knauer, J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T., Penuelas, J., Pongratz, J., Powell, A. S., Riutta, T., Sabot, M. E. B., Schleucher, J., Sitch, S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn, M. S., Treseder, K., Trugman, A. T., Trumbore, S. E., van Mantgem, P. J., Voelker, S. L., Whelan, M., Zuidema, P. A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 229(5), 2413-2445. doi:10.1111/NPH.16866.![]() |