Atmospheric constraints on greenhouse gas budgets: Requirements on Modelling tools based on multiple observations

Christoph Gerbig
Max-Planck-Institute for Biogeochemistry

Acknowledgements:
Ravan Ahmadov, Stefan Körner, K. Dhanyalekshmi, Roberto Kretschmer, Huilin Chen, Jan Winderlich, Julia Steinbach, Rona Thompson, Kristina Trusilova, Christian Rödenbeck, Martin Heimann

MetAir Bruno Neininger, Joel Giger, Hans Bär
CERES (Han Dolman, ...)
many CEIP Fluxtower PIs

EPFL Lausanne
May 4, 2008
Overview

• Motivation

• Model-data-fusion system

• Test data:
 - Tall tower measurements
 - CERES (CarboEurope regional Experiment)

• associated uncertainties, and possibilities for mitigation

• Closing remarks
Motivation

Scientific questions:

- Where and by which processes is anthropogenic CO_2 sequestered?
- What are the main feedback processes between carbon cycle and climate system?
- What is the carbon budget of a specific region (continent/country)?

Variable "Airborne fraction"
Estimating Regional Carbon Balances: Top-Down vs. Bottom-Up Approach
Estimating Regional Carbon Balances: Top-Down vs. Bottom-Up Approach

ZOTTO
(Zotino Tall Tower Observatory)
Central Siberia

Tall Towers

Atmospheric Observing System

FTIR: Fourier Transform Infrared

Satellites

OCO
~1 decade ago: only remote sites
Motivation

CO_2 in the continental atmospheric boundary layer:
- Variability on diurnal and synoptic scales
 \Rightarrow Information on surface fluxes

[Gerbig et al., 2006]
Estimating Regional Carbon Balances: Top-Down vs. Bottom-Up Approach

Upscaling Prediction

1000 km Atmospheric Observing System

10 km Top Down Inversion

Future

Downscaling Verification

Process Studies

Ecosystem Flux Measurements

Atmospheric Transport
The challenge: we need ...

- Model-data fusion
 - merging Top-Down and Bottom-Up

- Test data, to assess models capability
 - Experiments with high density observations (space & time) -> CERES

- Falsifiable models
 - scalable from experiment scale to scale of interest
 - quantitative (error bars)
WRF-VPRM-STILT modeling system

Weather Research and Forecasting Model (WRF)

Vegetation Photosynthesis and Respiration Model (VPRM)

ECMWF meteorology

Modeled CO₂

Forested area

Eddy flux data measurements

“3D Gap-filling”

diagnostic biosphere model

Forward
VPRM Vegetation Photosynthesis and Respiration Model

[Pathmathevan et al., GBC 2008]

Optimization of parameters α, β, λ, and PAR_0

$\text{NEE} = \text{GEE} + R \rightarrow = \alpha \cdot T + \beta$

ECMWF, NCEP, WRF or site measurements

MODIS surface reflectances 8 day, 500 m

SYNMAP land cover

[Jung et al., 2006]
2005 CEIP-EC data vs. VPRM (driven by site meteorology)

Spatial gradients:
- deciduous forests
- evergreen forests

Diurnal fluxes (June-July)
VPRM biospheric CO$_2$ fluxes

WRF-VPRM CO$_2$ (-366 ppm) at 150 m
VPRM biospheric CO$_2$ fluxes

WRF-VPRM column CO$_2$ (-366 ppm)
The WRF-VPRM-STILT modeling system includes the following components:

- **WRF-chem**: Weather Research and Forecasting Model
- **VPRM**: Vegetation Photosynthesis and Respiration Model
- **ECMWF meteorology**: Model for predicting weather
- **diagnostic biosphere model**: Integrates measured data with model simulations
- **Eddy flux data**: Measurements of CO₂ fluxes
- **Modeled CO₂**: Simulated CO₂ concentrations
- **Measured CO₂**: Observed CO₂ concentrations

The system also involves forward eddy flux data and uses diagnostic models to predict CO₂ concentrations.
Model-Data Comparison
Global model - Biscarrosse coastal station

Biscarrosse station, 16.05-15.06, 2005

- Observation
- LMDZ

stddev(diff) = 4.6649
bias = 0.11466
r2 = 0.29372
Model-Data Comparison
WRF-VPRM 2 km - Biscarrosse coastal station

Biscarrosse station, 16.05-15.06, 2005

Observation
WRF-VPRM

\[
\text{stdev(diff)} = 4.2615 \\
\text{bias} = 0.67438 \\
r^2 = 0.58669
\]
WRF-VPRM vs. Aircraft data

(CERES campaign)
Respired CO2 signal
10 ppm surface

$\text{CO}_2 = 10 \text{ppm} \quad 2005-05-26, 18^0\text{O}$

[Ahmadov et al., JGR 2007]
Mesoscale covariance of transport and CO2 fluxes “3D rectifier effect”
WRF-VPRM-STILT modeling system

- **Forward**
 - WRF-chem
 - Weather Research and Forecasting Model
 - VPRM
 - Vegetation Photosynthesis and Respiration Model
 - **modeled CO₂**
 - Eddy flux data

- **Inverse**
 - **measured CO₂**
 - Eddy flux data
 - **STILT**
 - Stochastic Time Inverted Lagrangian Transport Model
 - VPRM
 - diagnostic biosphere model
 - **regional scale CO₂ budgets**
 - **CO₂ at 300m agl (ppm)**

Parameter Optimization

- Eddy flux data
- Regional scale CO₂ budgets
- Parameter optimization scalars for R, GEE

Weather Prediction

- NEE-st [umol m⁻² s⁻¹]
- ECMWF meteorology
- Forward Inverse modeling system

Regional Scale CO₂ Budgets

- **01-Nov-05**
- **16-Nov-05**
- **01-Dec-05**

WRF-chem

- Weather Research and Forecasting Model

VPRM

- Vegetation Photosynthesis and Respiration Model

STILT

- Stochastic Time Inverted Lagrangian Transport Model

CO₂ at 300m agl (ppm)

- 01-Nov-05
- 16-Nov-05
- 01-Dec-05

measurements

- Forward WRF-VPRM-STILT modeling system
- Inverse measurements

Forward Inverse Modeling System

- CO₂ measured
- CO₂ modeled
- CO₂ budget
- Weather prediction model
- Regional scale CO₂ budgets

Eddy Flux Data

- Eddy flux data
- regional scale CO₂ budgets
- Parameter optimization scalars for R, GEE
STILT-VPRM

Stochastic Time Inverted Lagrangian Transport

- ECMWF winds + turbulence + convection
- Resolution: 1/12° x 1/8° (~10x10 km²)
- Biosphere: VPRM
- Emissions: IER (Hourly, 10 km) + EDGAR
- Lateral boundary condition: analyzed CO₂ fields (TM3 + Edgar + Takahashi + Biome-BGC)

IER + EDGAR CO2 fossil emissions

flux (micro-mole/m²/s)
STILT-VPRM

STILT-VPRM (regional)

CERES Dimo measurements
STILT @ Tall Tower

Bialystok tall tower

Bialystok tall tower footprints

Model: STILT-ECMWF

CO (measured)

CO (modelled, IER em.)
Aug 05 - Oct 06 Bialystok 300 m

Correlation coefficients model vs. measurement

Daytime only (13:30-16:30 GMT)

STILT-VPRM

TM3 analyzed fields

---2005------> <----------2006----------
8 tall towers (> 100 m) in Europe instrumented with continuous profile measurements

Optimize VPRM using STILT

=> Regional scale hourls fluxes at 10 km resolution
Uncertainties involved (continental stations)

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Type</th>
<th>Magnitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Model</td>
<td>Advection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PBL mixing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Model + Flux Model</td>
<td>Grid resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flux Model</td>
<td>Aggregation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Precision, accuracy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- winds uncertain + spatial flux variability = mixing ratios uncertain
Uncertainties involved (continental stations)

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Type</th>
<th>Magnitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Model</td>
<td>Advection</td>
<td>~ 5 ppm (summertime)</td>
<td>Lin and Gerbig, 2005</td>
</tr>
<tr>
<td></td>
<td>PBL mixing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Model + Flux Model</td>
<td>Grid resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flux Model</td>
<td>Aggregation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Precision, accuracy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- winds uncertain + spatial flux variability = mixing ratios uncertain
- comparison of radiosonde derived z_i with ECMWF-fields derived z_i
<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Type</th>
<th>Magnitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Model</td>
<td>Advection</td>
<td>~ 5 ppm (summertime)</td>
<td>Lin and Gerbig, 2005</td>
</tr>
<tr>
<td></td>
<td>PBL mixing</td>
<td>~ 5 ppm (summertime)</td>
<td>Gerbig et al, 2007</td>
</tr>
<tr>
<td>Convection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Model + Flux Model</td>
<td>Grid resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flux Model</td>
<td>Aggregation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Precision, accuracy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uncertainties involved (continental stations)

- Mixing height uncertain = mixing ratios uncertain
- Comparison of radiosonde derived z_i with ECMWF-fields derived z_i
Uncertainties involved (continental stations)

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Type</th>
<th>Magnitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Model</td>
<td>Advection</td>
<td>~ 5 ppm</td>
<td>Lin and Gerbig, 2005</td>
</tr>
<tr>
<td></td>
<td>PBL mixing</td>
<td>~ 5 ppm</td>
<td>Gerbig et al., 2007</td>
</tr>
<tr>
<td></td>
<td>Convection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Model + Flux Model</td>
<td>Grid resolution</td>
<td>~ 1 ppm @ 200 km (summertime)</td>
<td>Gerbig et al., 2003</td>
</tr>
<tr>
<td>Flux Model</td>
<td>Aggregation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Precision, accuracy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spatial statistics of multiple profile measurements (COBRA experiments)
Uncertainties involved (continental stations)

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Type</th>
<th>Magnitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Model</td>
<td>Advection</td>
<td>~ 5 ppm</td>
<td>Lin and Gerbig, 2005</td>
</tr>
<tr>
<td></td>
<td>PBL mixing</td>
<td>~ 5 ppm</td>
<td>Gerbig et al., 2007</td>
</tr>
<tr>
<td></td>
<td>Convection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Model + Flux Model</td>
<td>Grid resolution</td>
<td></td>
<td>Gerbig et al., 2003</td>
</tr>
<tr>
<td>Flux Model</td>
<td>Aggregation</td>
<td>depending on Aggregation and Model</td>
<td>Gerbig et al., 2006</td>
</tr>
<tr>
<td>Measurement</td>
<td>Precision, accuracy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pseudo data experiment, varying a-priori covariance length scale
“Eyesight of the atmosphere”
Reduction in flux uncertainty, spatially resolved, as function of a-priori covariance length scale

larger a priori covariance scales
⇒
larger scale „information“

⇒
Need good knowledge about prior uncertainty + covariance!

[Gerbig et al., ACP 2006]
Uncertainties involved (continental stations)

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Type</th>
<th>Magnitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Model</td>
<td>Advection</td>
<td>~ 5 ppm (summertime)</td>
<td>Lin and Gerbig, 2005</td>
</tr>
<tr>
<td></td>
<td>PBL mixing</td>
<td>~ 5 ppm (summertime)</td>
<td>Gerbig et al, 2007</td>
</tr>
<tr>
<td>Convection</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Model + Flux Model</td>
<td>Grid resolution</td>
<td>~ 1 ppm @ 200km (summertime)</td>
<td>Gerbig et al., 2003</td>
</tr>
<tr>
<td>Flux Model</td>
<td>Aggregation</td>
<td>depending on Aggregation and Model</td>
<td>Gerbig et al., 2006</td>
</tr>
<tr>
<td>Measurement</td>
<td>Precision, accuracy</td>
<td>0.1 ppm (targeted)</td>
<td>WMO</td>
</tr>
</tbody>
</table>
Mitigation?

Modifying some measurement strategies ...
PBL mixing problem

• Add a device to monitor mixed layer height
 - e.g. Ceilometer (operational at many airports and weather stations, globally ~5000)
 • Cheap LIDAR
 • Continuous observation of cloud base, but also vertical profile of backscatter up to 7.5 km possible
Regular vertical profiles: Aircraft

IAGOS (Integration of routine Aircraft measurements into a Global Observing System)

Predecessor (1993-2004):

MOZAIC (Measurement of Ozone and Water Vapour by Airbus In-Service Aircraft)
Regular vertical profiles: Aircraft

IAGOS: From MOZAIC to Sustainability

1993
MOZAIC I+II
Size & Weight
135 kg

2001
MOZAIC III
135 + 50 kg

2004
IAGOS
FP6 Design Study
100 kg

2005

2008

IAGOS-ERI
European Research Infrastructure
10-20 longrange aircraft, global coverage

Ambition & Scope
O$_3$ + H$_2$O

O$_3$ + H$_2$O + CO + NOy

O$_3$ + CO + NOy + NO$_2$ + H$_2$O + CO$_2$ + clouds + aerosol
IAGOS (Integration of routine Aircraft measurements into a Global Observing System)
Picarro CRDS system

SBIR (Small Business Innovation Research) project with Picarro & NOAA
- Modifications to ensure stability
- Size/weight reduction
- Repackaging & Certification
- First deployment in 2011, up to 7 A340 aircrafts

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_2 Precision</td>
<td>< 100 ppbv</td>
</tr>
<tr>
<td>CH_4 Precision</td>
<td>< 1 ppbv</td>
</tr>
<tr>
<td>H_2O Precision</td>
<td>< 50 ppmv</td>
</tr>
<tr>
<td>Measurement Speed</td>
<td>< 1 second</td>
</tr>
<tr>
<td>Drift (30 hours)</td>
<td>< 150 ppbv</td>
</tr>
</tbody>
</table>
Validation of FTIR column retrievals for CO₂ against CERES aircraft data

FTIR (NIR) vs. Aircraft + TM3 Model (above 4 km)

Precision < 0.5 ppm

[Regular vertical profiles: FTIR]

[MetAir Dimona (B. Neininger)]

[Bruker 120 M (J. Notholt, U. Bremen)]

[R. Macatangay, U. Bremen & MPI Jena]
Closing remarks

• Model-data-fusion:
 - Merging bottom-up and top-down is required, otherwise both are underconstrained at relevant scales

• High resolution information from intensive campaigns:
 - important for model validation

• Mesoscale modelling with WRF-VPRM:
 - VPRM captures NEE on relevant spatial and temporal scales
 - WRF-VPRM captures main mesoscale transport features

• Models aren’t perfect, and they will never be.
 - reduction and characterization of uncertainties is required
 - representation error: not necessarily random
 - mesoscale modeling required to bridge the gap to global models
 - aggregation error: specification of a priori uncertainty and covariances needed (may be solve for?)
Closing remarks II

• Transport: modified measurement strategy can help
 - PBL height: additional measurements needed near towers, assimilation into transport fields
 - Vertical mixing: regular vertical profiling
 ➔ IAGOS, FTIR, OCO, GOSAT

• To utilize long term & large scale information from mixing ratio observations, we first need to model (or parameterize) the short term & small scale with minimal bias
Thank you.