Max Planck Gesellschaft

Scientific publications 2019

2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | Theses

1Aasen, H., Wittenberghe, S. V., Medina, N. S., Damm, A., Goulas, Y., Wieneke, S., Hueni, A., Malenovský, Z., Alonso, L., Pacheco-Labrador, J., Cendrero-Mateo, M. P., Tomelleri, E., Burkart, A., Cogliati, S., Rascher, U., Arthur, A. M. (2019). Sun-induced chlorophyll fluorescence II: Review of passive measurement setups, protocols, and their application at the leaf to canopy level. Remote Sensing, 11(8): 927. doi:10.3390/rs11080927.
2Awad, A., Majcherczyk, A., Schall, P., Schroeter, K., Schöning, I., Schrumpf, M., Ehbrecht, M., Boch, S., Kahl, T., Bauhus, J., Seidel, D., Ammer, C., Fischer, M., Kuees, U., Pena, R. (2019). Ectomycorrhizal and saprotrophic soil fungal biomass are driven by different factors and vary among broadleaf and coniferous temperate forests. Soil Biology and Biochemistry, 131, 9-18. doi:10.1016/j.soilbio.2018.12.014.
3Besnard, S., Carvalhais, N., Arain, M. A., Black, A., Brede, B., Buchmann, N., Chen, J., Clevers, J. G. P. W., Dutrieux, L. P., Gans, F., Herold, M., Jung, M., Kosugi, Y., Knohl, A., Law, B. E., Paul-Limoges, E., Lohila, A., Merbold, L., Roupsard, O., Valentini, R., Wolf, S., Zhang, X., Reichstein, M. (2019). Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS One, 14(2): e0211510. doi:10.1371/journal.pone.0211510.
4Boeddinghaus, R. S., Marhan, S., Berner, D., Boch, S., Fischer, M., Hölzel, N., Kattge, J., Klaus, V. H., Kleinebecker, T., Oelmann, Y., Prati, D., Schäfer, D., Schöning, I., Schrumpf, M., Sorkau, E., Kandeler, E., Manning, P. (2019). Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology, 105(5), 2197-2210. doi:10.1111/1365-2745.13182.
5Boese, S., Jung, M., Carvalhais, N., Teuling, A. J., Reichstein, M. (2019). Carbon–water flux coupling under progressive drought. Biogeosciences, 16(13), 2557-2572. doi:10.5194/bg-16-2557-2019.
6Brando, P. M., Silvério, D., Maracahipes-Santos, L., Oliveira-Santos, C., Levick, S. R., Coe, M. T., Migliavacca, M., Balch, J. K., Macedo, M. N., Nepstad, D. C., Maracahipes, L., Davidson, E., Asner, G., Kolle, O., Trumbore, S. E. (2019). Prolonged tropical forest degradation due to compounding disturbances: Implications for CO2 and H2O fluxes. Global Change Biology, 25(9), 2855-2868. doi:10.1111/gcb.14659.
7Camps-Valls, G., Sejdinovic, D., Runge, J., Reichstein, M. (2019). A perspective on Gaussian processes for Earth observation. National Science Review, 6(4), 616-618. doi:10.1093/nsr/nwz028.
8Castro-Morales, K., Schürmann, G., Köstler, C., Rödenbeck, C., Heimann, M., Zaehle, S. (2019). Three decades of simulated global terrestrial carbon fluxes from a data assimilation system confronted with different periods of observations. Biogeosciences, 16(15), 3009-3032. doi:10.5194/bg-16-3009-2019.
9Cendrero-Mateo, M. P., Wieneke, S., Damm, A., Alonso, L., Pinto, F., Moreno, J., Guanter, L., Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., Goulas, Y., Aasen, H., Pacheco-Labrador, J., Arthur, A. M. (2019). Sun-induced chlorophyll fluorescence III: Benchmarking retrieval methods and sensor characteristics for proximal sensing. Remote Sensing, 11(8): 962. doi:10.3390/rs11080962.
10Evin, G., Wilhelm, B., Jenny, J.-P. (2019). Flood hazard assessment of the Rhône river revisited with reconstructed discharges from lake sediments. Global and Planetary Change, 172, 114-123. doi:10.1016/j.gloplacha.2018.09.010.
11Exbrayat, J.-F., Bloom, A. A., Carvalhais, N., Fischer, R., Huth, A., MacBean, N., Williams, M. (2019). Understanding the land carbon cycle with space data: Current status and prospects. Surveys in Geophysics, 40(4), 735-755. doi:10.1007/s10712-019-09506-2.
12Feng, X., Posmentier, E. S., Sonder, L. J., Fan, N. (2019). Rethinking Craig and Gordon’s approach to modeling isotopic compositions of marine boundary layer vapor. Atmospheric Chemistry and Physics, 19, 4005-4024. doi:10.5194/acp-19-4005-2019.
13Filippa, G., Cremonese, E., Galvagno, M., Isabellon, M., Bayle, A., Choler, P., Carlson, B. Z., Gabellani, S., di Cella, U. M., Migliavacca, M. (2019). Climatic drivers of greening trends in the Alps. Remote Sensing, 11(21): 2527. doi:10.3390/rs11212527.
14Fleischer, K., Rammig, A., Kauwe, M. G. D., Walker, A. P., Domingues, T. F., Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd, V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E., Mercado, L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A., Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S., Zhu, Q., Lapola, D. M. (2019). Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 12(9), 736-741. doi:10.1038/s41561-019-0404-9.
15Forkel, M., Drüke, M., Thurner, M., Dorigo, W., Schaphoff, S., Thonicke, K., von Bloh, W., Carvalhais, N. (2019). Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations. Scientific Reports, 9: 18757. doi:10.1038/s41598-019-55187-7.
16Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Goldewijk, K. K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., Zaehle, S. (2019). Global carbon budget 2019. Earth System Science Data, 11(4), 1783-1838. doi:10.5194/essd-11-1783-2019.
17García, Y. G., Shadaydeh, M., Mahecha, M. D., Denzler, J. (2019). Extreme anomaly event detection in biosphere using linear regression and a spatiotemporal MRF model. Natural Hazards, 98(3), 849-867. doi:10.1007/s11069-018-3415-8.
18Giling, D. P., Ebeling, A., Eisenhauer, N., Meyer, S. T., Roscher, C., Rzanny, M., Voigt, W., Weisser, W. W., Hines, J. (2019). Plant diversity alters the representation of motifs in food webs. Nature Communications, 10: 1226. doi:10.1038/s41467-019-08856-0.
19Hines, J., Giling, D. P., Rzanny, M., Voigt, W., Meyer, S. T., Weisser, W. W., Eisenhauer, N., Ebeling, A. (2019). A meta-food web for invertebrate species collected in a European grassland. Ecology, 100(6): e02679. doi:10.1002/ecy.2679.
20Jenny, J.-P., Koirala, S., Gregory-Eaves, I., Francus, P., Niemann, C., Ahrens, B., Brovkin, V., Baud, A., Ojala, A. E. K., Normandeau, A., Zolitschka, B., Carvalhais, N. (2019). Human and climate global-scale imprint on sediment transfer during the Holocene. Proc.Natl.Acad.Sci.USA, 116(46), 22972-22976. doi:10.1073/pnas.1908179116.
21Jiang, M. K., Zaehle, S., De Kauwe, M. G., Walker, A. P., Caldararu, S., Ellsworth, D. S., Medlyn, B. E. (2019). The quasi-equilibrium framework revisited: analyzing long-term CO2 enrichment responses in plant-soil models. Geoscientific Model Development, 12(5), 2069-2089. doi:10.5194/gmd-12-2069-2019.
22Jiang, M., Caldararu, S., Zaehle, S., Ellsworth, D. S., Medlyn, B. E. (2019). Towards a more physiological representation of vegetation phosphorus processes in land surface models. New Phytologist, 222(3), 1223-1229. doi:10.1111/nph.15688.
23Jin, J., Ma, X., Chen, H., Wang, H., Kang, X., Wang, X., Wang, Y., Yong, B., Guo, F. (2019). Grassland production in response to changes in biological metrics over the Tibetan Plateau. Science of the Total Environment, 666, 641-651. doi:10.1016/j.scitotenv.2019.02.293.
24Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., Reichstein, M. (2019). The FLUXCOM ensemble of global land-atmosphere energy fluxes. Scientific Data, 6: 74. doi:10.1038/s41597-019-0076-8.
25Kamaleson, A. S., Gonsalves, M.-J., Kumar, S., Jineesh, V. K., LokaBharathi, P. A. (2019). Spatio-temporal variations in sulfur-oxidizing and sulfate-reducing bacterial activities during upwelling, off south-west coast of India. Oceanologia, 61(4), 427-444. doi:10.1016/j.oceano.2019.03.002.
26Kayler, Z. E., Premke, K., Gessler, A., Gessner, M. O., Griebler, C., Hilt, S., Klemedtsson, L., Kuzyakov, Y., Reichstein, M., Siemens, J., Totsche, K.-U., Tranvik, L., Wagner, A., Weitere, M., Grossart, H.-P. (2019). Integrating aquatic and terrestrial perspectives to improve insights into organic matter cycling at the landscape scale. Frontiers in Earth Science, 7: 127. doi:10.3389/feart.2019.00127.
27Keenan, T. F., Migliavacca, M., Papale, D., Baldocchi, D., Reichstein, M., Torn, M., Wutzler, T. (2019). Widespread inhibition of daytime ecosystem respiration. Nature Ecology & Evolution, 3(3), 407-415. doi:10.1038/s41559-019-0809-2.
28Knauer, J., Zaehle, S., Kauwe, M. G. D., Bahar, N. H. A., Evans, J. R., Medlyn, B. E., Reichstein, M., Werner, C. (2019). Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model. Global Change Biology, 25(5), 1820-1838. doi:10.1111/gcb.14604.
29Koirala, S., Kim, H., Hirabayashi, Y., Kanae, S., Oki, T. (2019). Sensitivity of global hydrological simulations to groundwater capillary flux parameterizations. Water Resources Research, 55(1), 402-425. doi:10.1029/2018WR023434.
30Kraft, B., Jung, M., Körner, M., Requena Mesa, C., Cortés, J., Reichstein, M. (2019). Identifying dynamic memory effects on vegetation state using recurrent neural networks. Frontiers in Big Data, 2: 31. doi:10.3389/fdata.2019.00031.
31Kunert, N., El-Madany, T. S., Aparecido, L. M. T., Wolf, S., Potvin, C. (2019). Understanding the controls over forest carbon use efficiency on small spatial scales: Effects of forest disturbance and tree diversity. Agricultural and Forest Meteorology, 269-270, 136-144. doi:10.1016/j.agrformet.2019.02.007.
32Ma, X., Mahecha, M. D., Migliavacca, M., van der Plas, F., Benavides, R., Ratcliffe, S., Kattge, J., Richter, R., Musavi, T., Baeten, L., Barnoaiea, I., Bohn, F. J., Bouriaud, O., Bussotti, F., Coppi, A., Domisch, T., Huth, A., Jaroszewicz, B., Joswig, J., Pabon-Moreno, D. E., Papale, D., Selvi, F., Laurin, G. V., Valladares, F., Reichstein, M., Wirth, C. (2019). Inferring plant functional diversity from space: the potential of Sentinel-2. Remote Sensing of Environment, 233: 111368. doi:10.1016/j.rse.2019.111368.
33Mahecha, M. D., Guha-Sapir, D., Smits, J., Gans, F., Kraemer, G. (2019). Data challenges limit our global understanding of humanitarian disasters triggered by climate extremes. In J. Sillmann, S. Sippel, S. Russo (Eds.), Climate Extremes and Their Implications for Impact and Risk Assessment (pp. 243-256). Amsterdam: Elsevier.
34Mäkelä, J., Knauer, J., Aurela, M., Black, A., Heimann, M., Kobayashi, H., Lohila, A., Mammarella, I., Margolis, H., Markkanen, T., Susiluoto, J., Thum, T., Viskari, T., Zaehle, S., Aalto, T. (2019). Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH. Geoscientific Model Development, 12(9), 4075-4098. doi:10.5194/gmd-12-4075-2019.
35Martini, D., Pacheco-Labrador, J., Perez-Priego, O., van der Tol, C., El-Madany, T. S., Julitta, T., Rossini, M., Reichstein, M., Christiansen, R., Rascher, U., Moreno, G., Martín, M. P., Yang, P., Carrara, A., Guan, J., González-Cascón, R., Migliavacca, M. (2019). Nitrogen and phosphorus effect on sun-induced fluorescence and gross primary productivity in mediterranean grassland. Remote Sensing, 11(21): 2562. doi:10.3390/rs11212562.
36Mauro, B. D., Garzonio, R., Rossini, M., Filippa, G., Pogliotti, P., Galvagno, M., di Cella, U. M., Migliavacca, M., Baccolo, G., Clemenza, M., Delmonte, B., Maggi, V., Dumont, M., Tuzet, F., Lafaysse, M., Morin, S., Cremonese, E., Colombo, R. (2019). Saharan dust events in the European Alps: role on snowmelt and geochemical characterization. The Cryosphere, 13(a), 1147-1165. doi:10.5194/tc-13-1147-2019.
37Meroni, M., Fasbender, D., Lopez-Lozano, R., Migliavacca, M. (2019). Assimilation of earth observation data over cropland and grassland sites into a simple GPP model. Remote Sensing, 11(7): 749. doi:10.3390/rs11070749.
38Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol, C., Nedbal, L., Goulas, Y., Pérez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovsky, Z., Gastellu-Etchegorry, J.-P., Miller, J. R., Guanter, L., Moreno, J., Moya, I., Berry, J. A., Frankenberg, C., Zarco-Tejada, P. J. (2019). Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sensing of Environment, 231: 111177. doi:10.1016/j.rse.2019.04.030.
39Morris, K. A., Nair, R. K. F., Moreno, G., Schrumpf, M., Migliavacca, M. (2019). Fate of N additions in a multiple resource-limited Mediterranean oak savanna. Ecosphere, 10(11): e02921. doi:10.1002/ecs2.2921.
40Nair, R. K. F., Morris, K. A., Hertel, M., Luo, Y., Moreno, G., Reichstein, M., Schrumpf, M., Migliavacca, M. (2019). N: P stoichiometry and habitat effects on Mediterranean savanna seasonal root dynamics. Biogeosciences, 16(9), 1883-1901. doi:10.5194/bg-16-1883-2019.
41Pacheco-Labrador, J., Hueni, A., Mihai, L., Sakowska, K., Julitta, T., Kuusk, J., Sporea, D., Alonso, L., Burkart, A., Pilar Cendrero-Mateo, M., Aasen, H., Goulas, Y., Mac Arthur, A. (2019). Sun-induced chlorophyll fluorescence I: Instrumental considerations for proximal spectroradiometers. Remote Sensing, 11(8): 960. doi:10.3390/rs11080960.
42Pacheco-Labrador, J., Perez-Priego, O., El-Madany, T. S., Julitta, T., Rossini, M., Guan, J.-H., Moreno, G., Carvalhais, N., Martín, M. P., Gonzalez-Cascon, R., Kolle, O., Reichstein, M., van der Tolg, C., Carrara, A., Martini, D., Hammer, T. W., Moossen, H., Migliavacca, M. (2019). Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sensing of Environment, 234: 111362. doi:10.1016/j.rse.2019.111362.
43Penone, C., Allan, E., Soliveres, S., Felipe-Lucia, M. R., Gossner, M. M., Seibold, S., Simons, N. K., Schall, P., van der Plas, F., Manning, P., Manzanedo, R. D., Boch, S., Prati, D., Ammer, C., Bauhus, J., Buscot, F., Ehbrecht, M., Goldmann, K., Jung, K., Müller, J., Müller, J. C., Pena, R., Polle, A., Renner, S. C., Ruess, L., Schöning, I., Schrumpf, M., Solly, E., Tschapka, M., Weisser, W. W., Wubet, T., Fischer, M. (2019). Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecology Letters, 22(1), 170-180. doi:10.1111/ele.13182.
44Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195-204. doi:10.1038/s41586-019-0912-1.
45Reichstein, M., Carvalhais, N. (2019). Aspects of forest biomass in the earth system: Its role and major unknowns. Surveys in Geophysics, 40(4), 693-707. doi:10.1007/s10712-019-09551-x.
46Reichstein, M., Frank, D., Sillmann, J., Sippel, S. (2019). Outlook: Challenges for societal resilience under climate extremes. In J. Sillmann, S. Sippel, S. Russo (Eds.), Climate extremes and their implications for impact and risk assessment (pp. 341-353). Amsterdam: Elsevier.
47Requena-Mesa, C., Reichstein, M., Mahecha, M. D., Kraft, B., Denzler, J. (2019). Predicting landscapes from environmental conditions using generative networks. In G. A. FInk, S. Frintrop, X. Jiang (Eds.), Pattern Recognition, DAGM GCPR 2019 (pp. 203-217). Cham: Springer. doi:10.1007/978-3-030-33676-9_14.
48Rodriguez-Veiga, P., Quegan, S., Carreiras, J., Persson, H. J., Fransson, J. E. S., Hoscilo, A., Ziolkowski, D., Sterenczak, K., Lohberger, S., Staengel, M., Berninger, A., Siegert, F., Avitabile, V., Herold, M., Mermoz, S., Bouvet, A., Le Toan, T., Carvalhais, N., Santoro, M., Cartus, O., Rauste, Y., Mathieu, R., Asner, G. P., Thiel, C., Pathe, C., Schmullius, C., Seifert, F. M., Tansey, K., Balzter, H. (2019). Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 77, 53-68. doi:10.1016/j.jag.2018.12.008.
49Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M. D., Muñoz-Marí, J., van Nes, E. H., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J. (2019). Inferring causation from time series in Earth system sciences. Nature Communications, 10: 2553. doi:10.1038/s41467-019-10105-3.
50Rzanny, M., Mäder, P., Deggelmann, A., Chen, M., Wäldchen, J. (2019). Flowers, leaves or both? How to obtain suitable images for automated plant identification. Plant Methods, 15: 77. doi:10.1186/s13007-019-0462-4.
51Schewe, J., Gosling, S. N., Reyer, C., Zhao, F., Ciais, P., Elliott, J., Francois, L., Huber, V., Lotze, H. K., Seneviratne I, S., van Vliet, M. T. H., Vautard, R., Wada, Y., Breuer, L., Buechner, M., Carozza, D. A., Chang, J., Coll, M., Deryng, D., de Wit, A., Eddy, T. D., Folberth, C., Frieler, K., Friend, A. D., Gerten, D., Gudmundsson, L., Hanasaki, N., Ito, A., Khabarov, N., Kim, H., Lawrence, P., Morfopoulos, C., Mueller, C., Schmied, H. M., Orth, R., Ostberg, S., Pokhrel, Y., Pugh, T. A. M., Sakurai, G., Satoh, Y., Schmid, E., Stacke, T., Steenbeek, J., Steinkamp, J., Tang, Q., Tian, H., Tittensor, D. P., Volkholz, J., Wang, X., Warszawski, L. (2019). State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 10: 1005. doi:10.1038/s41467-019-08745-6.
52Schulze, E. D., Schweingruber, F., Gossner, M., Guenther, A., Weber, U., Stumpf, B., Komor, E. (2019). Springtime bark-splitting of Acer pseudoplatanus in Germany. Forests, 10(12): 1106. doi:10.3390/f10121106.
53Seeland, M., Rzanny, M., Boho, D., Wäldchen, J., Mäder, P. (2019). Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics, 20: 4. doi:10.1186/s12859-018-2474-x.
54Shadaydeh, M., Denzler, J., Garcia, Y. G., Mahecha, M. D. (2019). Time-frequency causal inference uncovers anomalous events in environmental systems. In G. A. FInk, S. Frintrop, X. Jiang (Eds.), Pattern Recognition, DAGM GCPR 2019 (pp. 499-512). Cham: Springer. doi:10.1007/978-3-030-33676-9_35.
55Shan, N., Jua, W., Migliavacca, M., Martini, D., Guanter, L., Chen, J., Goulas, Y., Zhan, Y. (2019). Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence. Agricultural and Forest Meteorology, 268, 189-201. doi:10.1016/j.agrformet.2019.01.031.
56Spielmann, F. M., Wohlfahrt, G., Hammerle, A., Kitz, F., Migliavacca, M., Alberti, G., Ibrom, A., El-Madany, T. S., Gerdel, K., Moreno, G., Kolle, O., Karl, T., Peressoti, A., Vedove, G. D. (2019). Gross primary productivity of four European ecosystems constrained by joint CO2 and COS flux measurements. Geophysical Research Letters, 46(10), 5284-5293. doi:10.1029/2019GL082006.
57Stoy, P. C., El-Madany, T. S., Fisher, J. B., Gentine, P., Gerken, T., Good, S. P., Klosterhalfen, A., Liu, S., Miralles, D. G., Perez-Priego, O., Rigden, A. J., Skaggs, T. H., Wohlfahrt, G., Anderson, R. G., Coenders-Gerrits, A. M. J., Jung, M., Maes, W. H., Mammarella, I., Mauder, M., Migliavacca, M., Nelson, J. A., Poyatos, R., Reichstein, M., Scott, R. L., Wolf, S. (2019). Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences, 16(19), 3747-3775. doi:10.5194/bg-16-3747-2019.
58Tagliabue, G., Panigada, C., Dechant, B., Baret, F., Cogliati, S., Colombo, R., Migliavacca, M., Rademske, P., Schickling, A., Schuttemeyer, D., Verrelst, J., Rascher, U., Ryu, Y., Rossini, M. (2019). Exploring the spatial relationship between airborne-derived red and far-red sun-induced fluorescence and process-based GPP estimates in a forest ecosystem. Remote Sensing of Environment, 231: 111272. doi:10.1016/j.rse.2019.111272.
59Tautenhahn, S., Grün-Wenzel, C., Jung, M., Higgins, S., Römermann, C. (2019). On the relevance of intraspecific trait variability—A synthesis of 56 dry grassland sites across Europe. Flora, 254, 161-172. doi:10.1016/j.flora.2019.03.002.
60Teubner, I. E., Forkel, M., Camps-Valls, G., Jung, M., Miralles, D. G., Tramontana, G., van der Schalie, R., Vreugdenhil, M., Mösinger, L., Dorigo, W. A. (2019). A carbon sink-driven approach to estimate gross primary production from microwave satellite observations. Remote Sensing of Environment, 229, 100-113. doi:10.1016/j.rse.2019.04.022.
61Thum, T., Caldararu, S., Engel, J., Kern, M., Pallandt, M., Schnur, R., Yu, L., Zaehle, S. (2019). A new model of the coupled carbon, nitrogen, and phosphorus cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996). Geoscientific Model Development, 12(11), 4781-4802. doi:10.5194/gmd-12-4781-2019.
62Tian, H., Yang, J., Xu, R., Lu, C., Canadell, J. G., Davidson, E. A., Jackson, R. B., Arneth, A., Chang, J., Ciais, P., Gerber, S., Ito, A., Joos, F., Lienert, S., Messina, P., Olin, S., Pan, S., Peng, C., Saikawa, E., Thompson, R. L., Vuichard, N., Winiwarter, W., Zaehle, S., Zhang, B. (2019). Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Global Change Biology, 25(2), 640-659. doi:10.1111/gcb.14514.
63Trifunov, V. T., Shadaydeh, M., Runge, J., Eyring, V., Reichstein, M., Denzler, J. (2019). Nonlinear causal link estimation under hidden confounding with an application to time series anomaly detection. In G. A. Fink, S. Frintrop, X. Jiang (Eds.), Pattern Recognition, DAGM GCPR 2019 (pp. 261-273). Cham: Springer. doi:10.1007/978-3-030-33676-9_18.
64van der Plas, F., Allan, E., Fischer, M., Alt, F., Arndt, H., Binkenstein, J., Blaser, S., Bluthgen, N., Bohm, S., Holzel, N., Klaus, V. H., Kleinebecker, T., Morris, K., Oelmann, Y., Prati, D., Renner, S. C., Rillig, M. C., Schaefer, H. M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Solly, E., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Weiner, C. N., Weisser, W. W., Werner, M., Westphal, C., Wilcke, W., Manning, P. (2019). Towards the development of general rules describing landscape heterogeneity-multifunctionality relationships. Journal of Applied Ecology, 56, 168-179. doi:10.1111/1365-2664.13260.
65Vieira, S., Sikorski, J., Dietz, S., Herz, K., Schrumpf, M., Bruelheide, H., Scheel, D., Friedrich, M. W., Overmann, J. (2019). Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. The ISME Journal, 14, 463-475. doi:10.1038/s41396-019-0543-4.
66Vuichard, N., Messina, P., Luyssaert, S., Guenet, B., Zaehle, S., Ghattas, J., Bastrikov, V., Peylin, P. (2019). Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production. Geoscientific Model Development, 12(11), 4751-4779. doi:10.5194/gmd-12-4751-2019.
67Walker, A. P., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Iversen, C. M., Asao, S., Guenet, B., Harper, A., Hickler, T., Hungate, B. A., Jain, A. K., Luo, Y., Lu, X., Lu, M., Luus, K., Megonigal, J. P., Oren, R., Ryan, E., Shu, S., Talhelm, A., Wang, Y.-P., Warren, J. M., Werner, C., Xia, J., Yang, B., Zak, D. R., Norby, R. J. (2019). Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nature Communications, 10: 454. doi:10.1038/s41467-019-08348-1.
68Walther, S., Duveiller, G., Jung, M., Guanter, L., Cescatti, A., Camps-Valls, G. (2019). Satellite observations of the contrasting response of trees and grasses to variations in water availability. Geophysical Research Letters, 46(3), 1429-1440. doi:10.1029/2018GL080535.
69Winter, S., Zaplata, M. K., Rzanny, M., Schaaf, W., Fischer, A., Ulrich, W. (2019). Increasing ecological multifunctionality during early plant succession. Plant Ecology, 220(4-5), 499-509. doi:10.1007/s11258-019-00930-3.
70Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin, C., Li, X., Qiu, G. Y. (2019). Physics-constrained machine learning of evapotranspiration. Geophysical Research Letters, 46(24), 14496-14507. doi:10.1029/2019GL085291.
Directions | Disclaimer | Data Protection | Contact | Internal | Webmail | Local weather | PRINT | © 2011-2022 Max Planck Institute for Biogeochemistry