Max Planck Gesellschaft

Projects of the Molecular Biogeochemistry Group

Introduction

Biomarkers are molecules that contain information on the presence of individual organisms in the environment. They span a variety of molecules with different chemical characteristics and are read using the “omic” approaches. DNA and RNA, for example, contain the genetic information of present and active organisms. This genomic information can be read and individual organisms can be identified. Both molecules, however, are very easily decomposed in the environment and consequently provide only snapshots of actual communities. In contrast, lipids are compounds used to make cell membranes and cuticular waxes that can persist for a long time in the environment, and can even be isolated from Archaean rocks. Lipidomics is used to develop profiles that can identify individuals or groups of organisms as well as lipid profiles characteristic for environmental conditions including salinity, anoxia, and desiccation. The key questions in molecular biogeochemistry are: Who is there, what are they doing, and why? Proteomic and metabolomic approach bridges from the presence of organisms to their function in the environment. However, in order to explore the function of individual processes and how the microbial fluxes link to the overall functioning of ecosystems, additional information is drawn from the isotopic information of biomarkers. Compound specific isotopes (13C, 14C, 15N, 18O and 2H) of biomarkers trace the flow of matter through the element cycles. The group of molecular biogeochemistry combines approaches using the natural abundance of stable isotopes, isotope labeling, and stable isotope probing (SIP) to quantify key processes in the environment.

Focus 1: Understanding the origin, fate and stability of organic matter in the critical zone



Soil organic matter (SOM) remains the largest single unknown in the terrestrial carbon cycle. The group investigates in various projects how abiotic factors like organic matter input, parent material, humidity and temperature as well as biotic factors such as stand age, plant and microbial diversity influence SOM storage. The isotopic information of 13C,14C and 15N of biomarkers from individual compounds and fractions determines the molecular turnover of SOM and suggests high vulnerability of SOM stored in soils. We determine the molecular and isotopic composition of dissolved organic matter (DOM) in order to understand the role of DOM in the environment. We use the molecular fingerprints of DOM using pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) and high resolution mass spectrometry to identify sources and evolution of organic matter. The isotopic content of DOC in soil depth profiles suggests that DOM from the surface is reactively transported in the soil and that DOM in deeper soil horizons is not related to the DOM in upper soil horizons.

Individual projects are part of the Collaborative Research Centre AquaDiva at the FSU Jena and the project "Molecular fingerprints of ecosystems" with the Zwillenberg-Tietz Stiftung.

involved members: PhD candidate Carsten Simon, PhD candidate Su Ding and PhD candidate Simon Benk

Focus 2: Understanding carbon flow in the plant-microbial-soil continuum



Carbohydrates are the central molecules in plant metabolism. During the day, they transport energy and carbon fixed by photosynthesis to support respiration, storage, growth and defense. At night, they provide energy for the cellular metabolism using mitochondrial respiration. However, so far the regulation of carbohydrate metabolism and the role of different processes in plant metabolism is still not completely understood. The group develops and applies molecular techniques to use the isotopic information of plant metabolites to trace the flow of carbon in plants and to understand its regulation.

involved members: PhD candidate Ronny Thoms and PhD candidate Somak Chowdhury



Focus 3: Understanding the role of biodiversity on element cycling



Plants react not only to abiotic factors like climate, but also to the presence of other plants and microorganisms in the soil. The interaction can be positive if, for example, resources are used complementarily but also negative if pathogens are infecting plants. At the community level, these interactions are difficult to investigate. Molecular tools can help to differentiate between the responses of individual species and communities. Our work is focused on the effect of grassland diversity on (1) the link between above- and below- ground diversity; and (2) the link between plant diversity, soil organic matter (SOM) dynamics and export of dissolved organic matter. In short term experiments we use isotopic labeling to trace the effect of diversity on how carbon is allocated from plants to soil microorganisms and SOM (Ecotron Experiment). In the long term we investigate if higher plant diversity gives the insurance for a long term success of the community, even if some individual species of the community may fail (Jena Experiment).

involved members: Postdoc Markus Lange, PhD candidate Stefan Karlowsky, PhD candidate Somak Chowdhury and PhD candidate Su Ding

Subproject: Understanding the effects of extreme events on the carbon budget in marginal grasslands



The allocation of newly assimilated carbon from plants to soil microorganisms is considered as a key process of terrestrial ecosystems. However, this interaction can be disturbed by extreme events (e.g. spring/summer drought or missing snowfall during winter), which are likely to occur more often as a consequence of climate change. This subproject is focused on the effects of biodiversity and land management on the response of marginal grasslands to early summer drought. In common garden experiments on mountain meadows we use stable isotope labeling techniques and biomarker analyses to trace the flow of newly photosynthesized carbon into the soil system. We are especially interested in the importance of different plant-soil microbial interactions for supporting the resistance to drought and the recovery from drought stress. Our work is a part of the European BiodivERsA network project "REGARDS" and uses study sites in Austria and France.

involved members: PhD candidate Stefan Karlowsky

Focus 4: Understanding and reconstructing past climate and vegetation dynamics



Understanding of the links between ecosystems and past and present climate will improve our prediction for future climates and how they may affect biodiversity and ecosystem function. Reconstructions of the Holocene climate are strongly linked to information from polar ice cores, while climate reconstructions for larger areas that permit separation of the effects of local climate effects from large-scale circulation patterns are still very sparse. The group explores the use of hydrogen isotopes of biomarkers as a proxy for palaeoclimate reconstructions. A major focus has been the construction of quantitative transfer functions that link hydrogen isotopes to the hydrologic cycle across humid, tropical, boreal and mountain ecosystems. These methods are now being applied to the large-scale climate reconstructions of monsoon variation in the past 10,000 years on the Tibetan plateau (TiP) and Kyrgyzstan (CADY).

involved members: PhD candidate Su Ding and PhD candidate Natalie Schröter

Directions | Disclaimer | Data Protection | Contact | Internal | Webmail | Local weather | PRINT | © 2011-2019 Max Planck Institute for Biogeochemistry