Max Planck Society
Max Planck Institut for Biogeochemistry

Publications


Submitted | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2001 - 2010 | < 2001 | edited


1Agora Energiewende, Agora Verkehrswende, Technical University of Denmark, Max-Planck-Institute for Biogeochemistry (2020). Making the most of offshore wind: Re-evaluating the potential of offshore wind in the German North Sea. Agora Energiewende, 1-81.
2Arens, S., Kleidon, A. (2008). Global sensitivity of weathering rates to atmospheric CO2 under the assumption of saturated river discharge. Mineralogical Magazine, 72(1), 301-304. doi:10.1180/minmag.2008.072.1.301.
3Arens, S., Kleidon, A. (2011). Eco-hydrological versus supply-limited weathering regimes and the potential for biotic enhancement of weathering at the global scale. Applied Geochemistry, 26, S274-S278.
4Benali, A., Mota, B., Carvalhais, N., Oom, D., Miller, L. M., Campagnolo, M. L., Pereira, J. M. C. (2017). Bimodal fire regimes unveil a global-scale anthropogenic fingerprint. Global Ecology and Biogeography, 26, 799-811. doi:10.1111/geb.12586.
5Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., Allen, S. T., et al. (2019). Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 64(10), 1141-1158. doi:10.1080/02626667.2019.1620507.
6Bohn, K., Dyke, J. G., Pavlick, R., Reineking, B., Reu, B., Kleidon, A. (2011). The relative importance of seed competition, resource competition and perturbations on community structure. Biogeosciences, 8(5), 1107-1120. doi:10.5194/bg-8-1107-2011.
7Bohn, K., Pavlick, R., Reu, B., Kleidon, A. (2014). The strengths of r- and K-selection shape diversity-disturbance relationships. PLoS One, 9(4): e95659. doi:10.1371/journal.pone.0095659.
8Bowring, S. P. K., Miller, L., Ganzeveld, L., Kleidon, A. (2014). Applying the concept of “energy return on investment” to desert greening of the Sahara/Sahel using a global climate model. Earth System Dynamics, 5(1), 43-53. doi:10.5194/esd-5-43-2014.
9Brunsell, N. A., Schymanski, S. J., Kleidon, A. (2011). Quantifying the thermodynamic entropy budget of the land surface: is this useful? Earth System Dynamics, 2, 87-103. doi:10.5194/esd-2-87-2011.
10Buendía, C., Arens, S., Hickler, T., Higgins, S. I., Porada, P., Kleidon, A. (2014). On the potential vegetation feedbacks that enhance phosphorus availability – insights from a process-based model linking geological and ecological timescales. Biogeosciences, 11, 3661-3683. doi:10.5194/bg-11-3661-2014.
11Buendía, C., Kleidon, A., Manzoni, S., Reu, B., Porporato, A. (2018). Evaluating the effect of nutrient redistribution by animals on the phosphorus cycle of lowland Amazonia. Biogeosciences, 15(1), 279-295. doi:10.5194/bg-15-279-2018.
12Buendía, C., Kleidon, A., Porporato, A. (2010). The role of tectonic uplift, climate and vegetation in the long-term terrestrial phosphorous cycle. Biogeosciences, 7(6), 2025-2038. doi:10.5194/bg-7-2025-2010.
13Conte, L., Renner, M., Brando, P., Santos, C. O. d., Silvério, D., Kolle, O., Trumbore, S. E., Kleidon, A. (2019). Effects of tropical deforestation on surface energy balance partitioning in southeastern Amazonia estimated from maximum convective power. Geophysical Research Letters, 46(8), 4396-4403. doi:10.1029/2018GL081625.
14Davie, J. C. S., Falloon, P. D., Kahana, R., Dankers, R., Betts, R., Portmann, F. T., Wisser, D., Clark, D. B., Ito, A., Masaki, Y., Nishina, K., Fekete, B., Tessler, Z., Wada, Y., Liu, X., Tang, Q., Hagemann, S., Stacke, T., Pavlick, R., Schaphoff, S., Gosling, S. N., Franssen, W., Arnell, N. (2013). Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP. Earth System Dynamics, 4, 359-374. doi:10.5194/esd-4-359-2013.
15Dhara, C., de la Torre, G., Acin, A. (2014). Can observed randomness be certified to be fully intrinsic? Physical Review Letters, 112, 100402-1-100402-5. doi:10.1103/PhysRevLett.112.100402.
16Dhara, C., Prettico, G., Acín, A. (2013). Maximal quantum randomness in Bell tests. Physical Review A, 88(5): 052116. doi:10.1103/PhysRevA.88.052116.
17Dhara, C., Renner, M., Kleidon, A. (2015). Geographic variation of surface energy partitioning in the climatic mean predicted from the maximum power limit. arXiv. Retrieved from arXiv:1512.01374.
18Dhara, C., Renner, M., Kleidon, A. (2016). Broad climatological variation of surface energy balance partitioning across land and ocean predicted from the maximum power limit. Geophysical Research Letters, 43(14), 7686-7693. doi:10.1002/2016GL070323.
19Dormann, C., Schymanski, S., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Romermann, C., Schroder, B., Singer, A. (2012). Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography, 39, 2119-2131. doi:10.1111/j.1365-2699.2011.02659.x.
20Drewry, D. T., Kumar, P., Long, S., Bernacchi, C., Liang, X. Z., Sivapalan, M. (2010). Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. Journal of Geophysical Research: Biogeosciences, 115, G04022. doi:10.1029/2010jg001340.
21Drewry, D. T., Kumar, P., Long, S., Bernacchi, C., Liang, X. Z., Sivapalan, M. (2010). Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2. Journal of Geophysical Research: Biogeosciences, 115: G04023. doi:10.1029/2010jg001341.
22Du, M., Kleidon, A., Sun, F., Renner, M., Liu, W. (2020). Stronger global warming on nonrainy days in observations from China. Journal of Geophysical Research: Atmospheres, 125(10): e2019JD031792. doi:10.1029/2019JD031792.
23Dyke, J. G., Gans, F., Kleidon, A. (2011). Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach. Earth System Dynamics, 2, 139-160. doi:10.5194/esd-2-139-2011.
24Dyke, J., Kleidon, A. (2010). The Maximum Entropy Production Principle: Its Theoretical Foundations and Applications to the Earth System. Entropy, 12(3), 613-630. doi:10.3390/e12030613.
25Ehret, U., Gupta, H. V., Sivapalan, M., Weijs, S. V., Schymanski, S. J., Blöschl, G., Gelfan, A. N., Harman, C., Kleidon, A., Bogaard, T. A., Wang, D., Wagener, T., Scherer, U., Zehe, E., Bierkens, M. F. P., Baldassarre, G. D., Parajka, J., van Beek, L. P. H., van Griensven, A., Westhoff, M. C., Winsemius, H. C. (2014). Advancing catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences, 18(2), 649-671. doi:10.5194/hess-18-649-2014.
26Emanuel, K., Hoss, F., Keith, D., Kuang, Z., Lundquist, J., Miller, L. (2016). Workshop on climate effects of wind turbines. Bulletin of the American Meteorological Society, 97(3), ES57-ES58. doi:10.1175/BAMS-D-15-00231.1.
27Fischer, J., Kleidon, A., Dittrich, P. (2015). Thermodynamics of random reaction networks. PLoS One, 10(2): e0117312. doi:10.1371/journal.pone.0117312.
28Frank, A., Carroll-Nellenback, J., Alberti, M., Kleidon, A. (2018). The Anthropocene generalized: evolution of exo-civilizations and their planetary feedback. Astrobiology, 18(5), 503-518. doi:10.1089/ast.2017.1671.
29Frank, A., Kleidon, A., Alberti, M. (2017). Earth as a hybrid planet: the Anthropocene in an evolutionary astrobiological context. Anthropocene, 19, 13-21. doi:10.1016/j.ancene.2017.08.002.
30Frieler, K., Levermann, A., Elliott, J., Heinke, J., Arneth, A., Bierkens, M. F. P., Ciais, P., Clark, D. B., Deryng, D., Döll, P., Falloon, P., Fekete, B., Folberth, C., Friend, A. D., Gellhorn, C., Gosling, S. N., Haddeland, I., Khabarov, N., Lomas, M., Masaki, Y., Nishina, K., Neumann, K., Oki, T., Pavlick, R., Ruane, A. C., Schmid, E., Schmitz, C., Stacke, T., Stehfest, E., Tang, Q., Wisser, D., Huber, V., Piontek, F., Warszawski, L., Schewe, J., Lotze-Campen, H., Schellnhuber, H. J. (2015). A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties. Earth System Dynamics, 6(2), 447-460. doi:10.5194/esd-6-447-2015.
31Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R. M., Betts, R., Cadule, P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P., Ito, A., Kahana, R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick, R., Peylin, P., Schaphoff, S., Vuichard, N., Warszawski, L., Wiltshire, A., Woodward, F. I. (2014). Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc.Natl.Acad.Sci.USA, 111(9), 3280-3285. doi:10.1073/pnas.1222477110.
32Froese, T., Virgo, N., Ikegami, T. (2013). Motility at the origin of life: its characterization and a model. Artificial Life, 20(1), 55-76. doi:10.1162/ARTL_a_00096.
33Gans, F., Miller, L. M., Kleidon, A. (2012). The problem of the second wind turbine – a note on a common but flawed wind power estimation method. Earth System Dynamics, 3, 79-86. doi:10.5194/esd-3-79-2012.
34Gans, F., Miller, L., Kleidon, A. (2012). Abschätzung des Windenergiepotenzials von Deutschland. In M. Beckmann, A. Hurtado (Eds.), Kraftwerkstechnik: Sichere und nachhaltige Energieversorgung, Band 4 (pp. 729-736). Neuruppin: TK Verlag, Karl Thomé-Kozmiensky,.
35Germer, S., Kleidon, A. (2019). Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014? PLoS One, 14(2): e0211028. doi:10.1371/journal.pone.0211028.
36Germer, S., van Dongen, R., Kern, J. (2017). Decomposition of cherry tree prunings and their short-term impact on soil quality. Applied Soil Ecology, 117-118, 156-164. doi:10.1016/j.apsoil.2017.05.003.
37Hibler, L. F., Maxwell, A. R., Miller, L. M., Kohn, N. P., Woodruff, D. L., Montes, M. J., Bowles, J. H., Moline, M. A. (2008). Improved fine-scale transport model performance using AUV and HSI feedback in a tidally dominated system. Journal of Geophysical Research: Oceans, 113(C8): C08036. doi:10.1029/2008JC004739.
38Hildebrandt, A., Kleidon, A., Bechmann, M. (2016). A thermodynamic formulation of root water uptake. Hydrology and Earth System Sciences, 20(8), 3441-3454. doi:10.5194/hess-20-3441-2016.
39Kareiva, P., Agard, J. B. R., Alder, J., Bennett, E., Butler, C., Carpenter, S., Cheung, W. W. L., Cumming, G. S., Defries, R., De Vries, B., Dickinson, R. E., Dobson, J., Foley, J. A., Geoghegan, J., Holland, B., Kabat, P., Keymer, J., Kleidon, A., Lodge, D., Manson, S., Mcglade, J., Mooney, H. A., Parma, A. M., Pascual, M. A., Pereira, H. M., Rosegrant, M., Ringler, C., Sala, O. E., Turner Ii, B. L., Van Vuuren, D., Wall, D. H., Wilkinson, P., Wolters, V. (2005). State of the art in simulating future changes in ecosystem services. In S. Carpenter, P. L. Pingali, E. M. Bennett, M. B. Zurek (Eds.), Ecosystems and human well-being: scenarios: findings of the Scenarios Working Group, Millennium Ecosystem Assessment (pp. 71-115). Washington: Island Press.
40Kern, J., Germer, S., Ammon, C., Balasus, A., Bischoff, W.-A., Schwarz, A., Forstreuter, M., Kaupenjohann, M. (2018). Environmental effects over the first 2½ rotation periods of a fertilised poplar short rotation coppice. BioEnergy Research, 11(1), 152-165. doi:10.1007/s12155-017-9885-9.
41Kleidon, A. (2006). How meaningful is surface temperature in characterizing the climate system response to human-driven land cover change? iLeaps Newsletter, 2, 16-17.
42Kleidon, A. (2006). Quantifying the biologically possible range of steady-state soil and surface climates with climate model simulations. Biologia (Bratislava), 61(19), S234-S239. doi:10.2478/s11756-006-0164-z.
43Kleidon, A. (2006). The climate sensitivity to human appropriation of vegetation productivity and its thermodynamic characterization. Global and Planetary Change, 54(1-2), 109-127.
44Kleidon, A. (2007). Quantifizierung optimaler Funktion der Landbiosphaere und deren Auswirkung auf das Erdsystem.
45Kleidon, A. (2007). Journal club. Nature, 445(7128), 571.
46Kleidon, A. (2007). Optimized stomatal conductance and the climate sensitivity to carbon dioxide. Geophysical Research Letters, 34(14), L14709. doi:10.1029/2007gl030342.
47Kleidon, A. (2007). Thermodynamics and environmental constraints make the biosphere predictable - a response to Volk. Climatic Change, 85(3-4), 259-266. doi:10.1007/s10584-007-9320-x.
48Kleidon, A. (2008). Energy balance. In S. E. Joergensen (Ed.), Encyclopedia of Ecology (pp. 1276-1289). Amsterdam [u.a.]: Elsevier.
49Kleidon, A. (2008). Entropy production by evapotranspiration and its geographic variation. Soil and Water Research, 3(S1), S89-S94. doi:10.17221/1192-SWR.
50Kleidon, A. (2009). Climatic constraints on maximum levels of human metabolic activity and their relation to human evolution and global change. Climatic Change, 95(3-4), 405-431. doi:10.1007/s10584-008-9537-3.
51Kleidon, A. (2009). Maximum entropy production and general trends in biospheric evolution. Paleontological Journal, 43(8), 980-985. doi:10.1134/S0031030109080164.
52Kleidon, A. (2009). Nonequilibrium thermodynamics and maximum entropy production in the Earth system. Naturwissenschaften, 96(6), 653-677. doi:10.1007/s00114-009-0509-x.
53Kleidon, A. (2010). A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 365(1545), 1303-1315. doi:10.1098/rstb.2009.0310.
54Kleidon, A. (2010). Life as the major driver of planetary geochemical disequilibrium: Reply to comments on "Life, hierarchy, and the thermodynamic machinery of planet Earth". Physics of Life Reviews, 7(4), 473-476. doi:10.1016/j.plrev.2010.11.001.
55Kleidon, A. (2010). Life, hierarchy, and the thermodynamic machinery of planet Earth. Physics of Life Reviews, 7(4), 424-460. doi:10.1016/j.plrev.2010.10.002.
56Kleidon, A. (2010). Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences, 368(1910), 181-196. doi:10.1098/rsta.2009.0188.
57Kleidon, A. (2012). How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet? Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences, 370(1962), 1012-1040. doi:10.1098/rsta.2011.0316.
58Kleidon, A. (2012). Was leistet die Erde? Physik in unserer Zeit, 43(3), 136-144. doi:10.1002/piuz.201201294.
59Kleidon, A. (2013). Understanding life from a thermodynamic Earth system perspective. In M. Pilotelli, G. P. Beretta (Eds.), Proceedings of the 12th Joint European Thermodynamics Conference (pp. 61-66). Brescia: Università degli Studi di Brescia.
60Kleidon, A. (2016). Thermodynamic Foundations of the Earth System. Cambridge: Cambridge University Press.
61Kleidon, A. (2016). How the Earth generates renewable energy: Physical limits and their implications for a sustainable energy future. European Energy Journal, 6(2), 18-31.
62Kleidon, A. (2019). How the technosphere can make the earth more active. Technosphere Magazin.
63Kleidon, A. (2019). Sonne statt Flaute. Physik in unserer Zeit, 50(3), 120-127. doi:10.1002/piuz.201901540.
64Kleidon, A. (2019). Was leistet die Erde und was trägt die Menschheit dazu bei? Antworten aus der Thermodynamik des Erdsystems. In Leibniz Online.
65Kleidon, A. (2020). Sonne oder Treibhauseffekt? Globale Erwärmung einfach und physikalisch nachgerechnet. Physik in unserer Zeit, 51(2), 79-85. doi:10.1002/piuz.202001560.
66Kleidon, A. (2021). What limits photosynthesis? Identifying the thermodynamic constraints of the biosphere within the Earth system. Biochimica et Biophysica Acta, Bioenergetics, 1862(1): 148303. doi:10.1016/j.bbabio.2020.148303.
67Kleidon, A., Adams, J., Pavlick, R., Reu, B. (2009). Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity. Environmental Research Letters, 4(1), 014007. doi:10.1088/1748-9326/4/1/014007.
68Kleidon, A., Fraedrich, K., Heimann, M. (2000). A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate. Climatic Change, 44(4), 471-493.
69Kleidon, A., Fraedrich, K., Low, C. (2007). Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification? Biogeosciences, 4(5), 707-714. doi:10.5194/bg-4-707-2007.
70Kleidon, A., Gans, F., Miller, L., Pavlick, R. (2011). Sonne, Wind und Wellen - Natürliche Grenzen erneuerbarer Energien im Erdsystem. In H. Beckmann (Ed.), Kraftwerkstechnik (pp. 463-470). Neuruppin: TK Verlag.
71Kleidon, A., Heimann, M. (2000). Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Climate Dynamics, 16(2-3), 183-199.
72Kleidon, A., Kravitz, B., Renner, M. (2015). The hydrological sensitivity to global warming and solar geoengineering derived from thermodynamic constraints. Geophysical Research Letters, 42(1), 138-144. doi:10.1002/2014GL062589.
73Kleidon, A., Malhi, Y., Cox, P. M. (2010). Maximum entropy production in environmental and ecological systems Introduction. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 365(1545), 1297-1302. doi:10.1098/rstb.2010.0018.
74Kleidon, A., Miller, L., Gans, F. (2016). Physical limits of solar energy conversion in the Earth system. Topics in Current Chemistry, 371, 1-22. doi:10.1007/128_2015_637.
75Kleidon, A., Renner, M. (2013). A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change. Earth System Dynamics, 4, 455-465. doi:10.5194/esd-4-455-2013.
76Kleidon, A., Renner, M. (2013). Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications. Hydrology and Earth System Sciences, 17(7), 2873-2892. doi:10.5194/hess-17-2873-2013.
77Kleidon, A., Renner, M. (2015). Geoengineering ist keine Lösung -- Der globale Wasserkreislauf im Klimasystem. Physik in unserer Zeit, 46(1), 27-31. doi:10.1002/piuz.201401381.
78Kleidon, A., Renner, M. (2017). An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle. Earth System Dynamics, 8(3), 849-864. doi:10.5194/esd-8-849-2017.
79Kleidon, A., Renner, M. (2018). Diurnal land surface energy balance partitioning estimated from the thermodynamic limit of a cold heat engine. Earth System Dynamics, 9(3), 1127-1140. doi:10.5194/esd-9-1127-2018.
80Kleidon, A., Renner, M., Porada, P. (2014). Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrology and Earth System Sciences, 18, 2201-2218. doi:10.5194/hess-18-2201-2014.
81Kleidon, A., Schymanski, S. (2008). Thermodynamics and optimality of the water budget on land: A review. Geophysical Research Letters, 35(20), L20404. doi:10.1029/2008GL035393.
82Kleidon, A., Schymanski, S., Stieglitz, M. (2008). Thermodynamics, irreversibility and optimality in land surface hydrology. In K. Strelcová, F. Mátyás, A. Kleidon (Eds.), Bioclimatology and Natural Hazards (pp. 107-118). Berlin [u.a.]: Springer.
83Kleidon, A., Zehe, E., Ehret, U., Scherer, U. (2013). Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale. Hydrology and Earth System Sciences, 17, 225-251. doi:10.5194/hess-17-225-2013.
84Kleidon, A., Zehe, E., Ehret, U., Scherer, U. (2014). Earth system dynamics as the consequence of the second law: Maximum power limits, dissipative structures, and planetary interactions. In R. C. Dewar, C. Lineweaver, R. Niven, K. Regenauer-Lieb (Eds.), Beyond the second law: entropy production and non-equilibrium systems (pp. 163-182). doi:10.1007/978-3-642-40154-1_8.
85Kleidon, A., Zehe, E., Lin, H. (2012). Chapter 8: Thermodynamics limits of the critical zone and its relevance to hydropedology. In H. Lin (Ed.), Hydropedology: Synergistic Integration of Soil Science and Hydrology (pp. 243-281). Amsterdam u.a.: Academic Press, Elsevier.
86Kormann, C., Francke, T., Renner, M., Bronstert, A. (2015). Attribution of high resolution streamflow trends in Western Austria – an approach based on climate and discharge station data. Hydrology and Earth System Sciences, 19(3), 1225-1245. doi:10.5194/hess-19-1225-2015.
87Le, P. V. V., Kumar, P., Drewry, D. T. (2011). Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proc.Natl.Acad.Sci.USA, 108(37), 15085-15090. doi:10.1073/pnas.1107177108.
88Lei, H. M., Yang, D. W., Schymanski, S. J., Sivapalan, M. (2008). Modeling the crop transpiration using an optimality-based approach. Science in China Series E - Technological Sciences, 51(Suppl 2), 60-75.
89Linder, H., Bykova, O., Dyke, J., Etienne, R., Hickler, T., Kuhn, I., Marion, G., Ohlemuller, R., Schymanski, S., Singer, A. (2012). Biotic modifiers, environmental modulation and species distribution models. Journal of Biogeography, 39, 2179-2190. doi:10.1111/j.1365-2699.2012.02705.x.
90Loritz, R., Gupta, H., Jackisch, C., Westhoff, M., Kleidon, A., Ehret, U., Zehe, E. (2018). On the dynamic nature of hydrological similarity. Hydrology and Earth System Sciences, 22(7), 3663-3684. doi:10.5194/hess-22-3663-2018.
91Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H., Zehe, E. (2019). A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. Hydrology and Earth System Sciences, 23(9), 3807-3821. doi:10.5194/hess-23-3807-2019.
92Mertens, J., Germer, S., Germer, J., Sauerborn, J. (2017). Comparison of soil amendments for reforestation with a native multipurpose tree under semiarid climate: Root and root tuber response of Spondias tuberosa. Forest Ecology and Management, 396, 1-10. doi:10.1016/j.foreco.2017.04.010.
93Miller, L. M., Brunsell, N. A., Mechem, D. B., Gans, F., Monaghan, A. J., Vautard, R., Keith, D. W., Kleidon, A. (2015). Two methods for estimating limits to large-scale wind power generation. Proc.Natl.Acad.Sci.USA, 112(36), 11169-11174. doi:10.1073/pnas.1408251112.
94Miller, L. M., Gans, F., Kleidon, A. (2011). Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth System Dynamics, 2, 1-12. doi:10.5194/esd-2-1-2011.
95Miller, L. M., Gans, F., Kleidon, A. (2011). Jet stream wind power as a renewable energy resource: little power, big impacts. Earth System Dynamics, 2(2), 201-212. doi:10.5194/esd-2-201-2011.
96Miller, L. M., Kleidon, A. (2017). Reply to Badger and Volker: Correctly estimating wind resources at large scales requires more than simple extrapolation. Proc.Natl.Acad.Sci.USA, 114: 43, pp. E8946-E8946. doi:10.1073/pnas.1713240114.
97Miller, L., Kleidon, A. (2016). Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits. Proc.Natl.Acad.Sci.USA, 113(48), 13570-13575. doi:10.1073/pnas.1602253113.
98Nishina, K., Ito, A., Beerling, D. J., Cadule, P., Ciais, P., Clark, D. B., Falloon, P., Friend, A. D., Kahana, R., Kato, E., Keribin, R., Lucht, W., Lomas, M., Rademacher, T. T., Pavlick, R., Schaphoff, S., Vuichard, N., Warszawaski, L., Yokohata, T. (2014). Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation. Earth System Dynamics, 5, 197-209. doi:10.5194/esd-5-197-2014.
99Nishina, K., Ito, A., Falloon, P., Friend, A. D., Beerling, D. J., Ciais, P., Clark, D. B., Kahana, R., Kato, E., Lucht, W., Lomas, M., Pavlick, R., Schaphoff, S., Warszawaski, L., Yokohata, T. (2015). Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results. Earth System Dynamics, 6(2), 435-445. doi:10.5194/esd-6-435-2015.
100Pandey, S. K., Vinoj, V., Panwar, A. (2020). The short-term variability of aerosols and their impact on cloud properties and radiative effect over the Indo-Gangetic Plain. Atmospheric Pollution Research, 11(3), 630-638. doi:10.1016/j.apr.2019.12.017.
101Panwar, A., Kleidon, A., Renner, M. (2019). Do surface and air temperatures contain similar imprints of evaporative conditions? Geophysical Research Letters, 46(7), 3802-3809. doi:10.1029/2019GL082248.
102Pavlick, R., Drewry, D. T., Bohn, K., Reu, B., Kleidon, A. (2013). The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences, 10, 4137-4177. doi:10.5194/bg-10-4137-2013.
103Piontek, F., Müller, C., Pugh, T. A. M., Clark, D. B., Deryng, D., Elliott, D. W., de González, F. J. C., Flörke, M., Folberth, C., Franssen, W., Frieler, K., Friend, A. D., Gosling, S. N., Hemming, D., Khabarov, N., Kim, H., Lomas, M. R., Masaki, Y., Mengel, M., Morse, A., Neumann, K., Nishina, K., Ostberg, S., Pavlick, R., Ruane, A. C., Schewe, J., Schmid, E., Stacke, T., Tang, Q., Tessler, Z. D., Tompkins, A. M., Warszawski, L., Wisser, D., Schellnhuber, H. J. (2014). Multisectoral climate impact hotspots in a warming world. Proc.Natl.Acad.Sci.USA, 111(9), 3233-3238. doi:10.1073/pnas.1222471110.
104Porada, P., Kleidon, A., Schymanski, S. J. (2011). Entropy production of soil hydrological processes and its maximisation. Earth System Dynamics, 2, 179-190. doi:10.5194/esd-2-179-2011.
105Porada, P., Lenton, T. M., Pohl, A., Weber, B., Mander, L., Donnadieu, Y., Beer, C., Pöschl, U., Kleidon, A. (2016). High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nature Communications, 7: 12113. doi:10.1038/ncomms12113.
106Porada, P., Pöschl, U., Kleidon, A., Beer, C., Weber, B. (2017). Estimating global nitrous oxide emissions by lichens and bryophytes with a process-based productivity model. Biogeosciences, 14(6), 1593-1602. doi:10.5194/bg-14-1593-2017.
107Porada, P., Tamm, A., Raggio, J., Cheng, Y., Kleidon, A., Pöschl, U., Weber, B. (2019). Global NO and HONO emissions of biological soil crusts estimated by a process-based non-vascular vegetation model. Biogeosciences, 16(9), 2003-2031. doi:10.5194/bg-16-2003-2019.
108Porada, P., Van Stan II, J. T., Kleidon, A. (2018). Significant contribution of non-vascular vegetation to global rainfall interception. Nature Geoscience, 11, 563-567. doi:10.1038/s41561-018-0176-7.
109Porada, P., Weber, B., Elbert, W., Pöschl, U., Kleidon, A. (2013). Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences, 10, 6989-6989. doi:10.5194/bg-10-6989-2013.
110Porada, P., Weber, B., Elbert, W., Pöschl, U., Kleidon, A. (2014). Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochemical Cycles, 28(2), 71-85. doi:10.1002/2013GB004705.
111Quijano, J. C., Kumar, P., Drewry, D. T. (2013). Passive regulation of soil biogeochemical cycling by root water transport. Water Resources Research, 49(6), 3729-3746. doi:10.1002/wrcr.20310.
112Quijano, J. C., Kumar, P., Drewry, D. T., Goldstein, A., Misson, L. (2012). Competitive and mutualistic dependencies in multispecies vegetation dynamics enabled by hydraulic redistribution. Water Resources Research, 48, W05518. doi:10.1029/2011wr011416.
113Renner, M., Brenner, C., Mallick, K., Wizemann, H.-D., Conte, L., Trebs, I., Wei, J., Wulfmeyer, V., Schulz, K., Kleidon, A. (2019). Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration. Hydrology and Earth System Sciences, 23(1), 515-535. doi:10.5194/hess-23-515-2019.
114Renner, M., Brust, K., Schwärzel, K., Volk, M., Bernhofer, C. (2014). Separating the effects of changes in land cover and climate: a hydro-meteorological analysis of the past 60 yr in Saxony, Germany. Hydrology and Earth System Sciences, 18, 389-405. doi:10.5194/hess-18-389-2014.
115Renner, M., Hassler, S. K., Blume, T., Weiler, M., Hildebrandt, A., Guderle, M., Schymanski, S. J., Kleidon, A. (2016). Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits. Hydrology and Earth System Sciences, 20(5), 2063-2083. doi:10.5194/hess-20-2063-2016.
116Renner, M., Kleidon, A., Clark, M., Nijssen, B., Heidkamp, M., Best, M., Abramowitz, G. (in press). How well can land-surface models represent the diurnal cycle of turbulent heat fluxes? Journal of Hydrometeorology. doi:10.1175/JHM-D-20-0034.1.
117Renner, M., Wild, M., Schwarz, M., Kleidon, A. (2019). Estimating shortwave clear-sky fluxes from hourly global radiation records by Quantile Regression. Earth Planets Space, 6(8), 1532-1546. doi:10.1029/2019EA000686.
118Reu, B., Proulx, R., Bohn, K., Dyke, J. G., Kleidon, A., Pavlick, R., Schmidtlein, S. (2011). The role of climate and plant functional trade-offs in shaping global biome and biodiversity patterns. Global Ecology and Biogeography, 20(4), 570-581. doi:10.1111/j.1466-8238.2010.00621.x.
119Reu, B., Zaehle, S., Bohn, K., Pavlick, R., Schmidtlein, S., Williams, J. W., Kleidon, A. (2014). Future no-analogue vegetation produced by no-analogue combinations of temperature and insolation. Global Ecology and Biogeography, 23(2), 156-167. doi:10.1111/geb.12110.
120Reu, B., Zaehle, S., Proulx, R., Bohn, K., Kleidon, A., Pavlick, R., Schmidtlein, S. (2011). The role of plant functional trade-offs for biodiversity changes and biome shifts under scenarios of global climatic change. Biogeosciences, 8(5), 1255-1266. doi:10.5194/bg-8-1255-2011.
121Schaefli, B., Harman, C. J., Sivapalan, M., Schymanski, S. J. (2011). HESS Opinions: Hydrologic predictions in a changing environment: behavioral modeling. Hydrology and Earth System Sciences, 15(2), 635-646. doi:10.5194/hess-15-635-2011.
122Schymanski, S. J. (2008). Optimality as a concept to understand and model vegetation at different scales. Geography Compass, 2(5), 1580-1598. doi:10.1111/j.1749-8198.2008.00137.x.
123Schymanski, S. J., Kleidon, A., Roderick, M. L. (2009). Ecohydrological optimality. In M. G. Anderson, J. J. Mcdonnell (Eds.), Encyclopedia of Hydrological Sciences. Chichester: Wiley.
124Schymanski, S. J., Kleidon, A., Stieglitz, M., Narula, J. (2010). Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 365(1545), 1449-1455. doi:10.1098/rstb.2009.0309.
125Schymanski, S. J., Roderick, M. L., Sivapalan, M., Hutley, L. B., Beringer, J. (2007). A test of the optimality approach to modelling canopy properties and CO2 uptake by natural vegetation. Plant, Cell and Environment, 30(12), 1586-1598. doi:10.1111/j.1365-3040.2007.01728.x.
126Schymanski, S. J., Roderick, M. L., Sivapalan, M., Hutley, L. B., Beringer, J. (2008). A canopy-scale test of the optimal water-use hypothesis. Plant, Cell and Environment, 31(1), 97-111. doi:10.1111/j.1365-3040.2007.01740.x.
127Schymanski, S. J., Sivapalan, M., Roderick, M. L., Beringer, J., Hutley, L. B. (2008). An optimality-based model of the coupled soil moisture and root dynamics. Hydrology and Earth System Sciences, 12(3), 913-932. doi:10.5194/hess-12-913-2008.
128Schymanski, S. J., Sivapalan, M., Roderick, M. L., Hutley, L. B., Beringer, J. (2009). An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resources Research, 45, W01412. doi:10.1029/2008wr006841.
129Simoncini, E., Kleidon, A., Gallori, E. (2010). The emergence of life: Thermodynamics of chemical free energy generation in off-axis hydrothermal vent systems and its consequences for compartmentalization and life's origins. Journal of Cosmology, 10, 3325-3344.
130Simoncini, E., Russell, M. J., Kleidon, A. (2011). Modeling Free Energy Availability from Hadean Hydrothermal Systems to the First Metabolism. Origins of Life and Evolution of Biospheres, 41(6), 529-532. doi:10.1007/s11084-011-9251-4.
131Simoncini, E., Virgo, N., Kleidon, A. (2013). Quantifying drivers of chemical disequilibrium: theory and application to methane in the Earth's atmosphere. Earth System Dynamics, 4, 317-331. doi:10.5194/esd-4-317-2013.
132Spank, U., Schwaerzel, K., Renner, M., Moderow, U., Bernhofer, C. (2013). Effects of measurement uncertainties of meteorological data on estimates of site water balance components. Journal of Hydrology, 492, 176-189. doi:10.1016/j.jhydrol.2013.03.047.
133Strelcová, K., Mátyás, C., Kleidon, A., Lapin, M., Matejka, F., Blazenec, M., Skvarenina, J., Holecy, J. (2008). Bioclimatology and natural hazards. Dordrecht [u.a.]: Springer.
134Thurner, M., Beer, C., Ciais, P., Friend, A. D., Ito, A., Kleidon, A., Lomas, M. R., Quegan, S., Rademacher, T. T., Schaphoff, S., Tum, M., Wiltshire, A., Carvalhais, N. (2017). Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests. Global Change Biology, 23(8), 3076-3091. doi:10.1111/gcb.13660.
135Wang, T., Sun, F., Ge, Q., Kleidon, A., Liu, W. (2018). The effect of elevation bias in interpolated air temperature datasets on surface warming in China during 1951-2015. Journal of Geophysical Research: Atmospheres, 123(4), 2141-2151. doi:10.1002/2017JD027510.
136Warszawski, L., Friend, A., Ostberg, S., Frieler, K., Lucht, W., Schaphoff, S., Beerling, D., Cadule, P., Ciais, P., Clark, D. B., Kahana, R., Ito, A., Keribin, R., Kleidon, A., Lomas, M., Nishina, K., Pavlick, R., Rademacher, T. T., Buechner, M., Piontek, F., Schewe, J., Serdeczny, O., Schellnhuber, H. J. (2013). A multi-model analysis of risk of ecosystem shifts under climate. Environmental Research Letters, 8: 044018. doi:10.1088/1748-9326/8/4/044018.
137Williams, C. A., Reichstein, M., Buchmann, N., Baldocchi, D., Beer, C., Schwalm, C., Wohlfahrt, G., Hasler, N., Bernhofer, C., Foken, T., Papale, D., Schymanski, S., Schaefer, K. (2012). Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resources Research, 48, W06523. doi:10.1029/2011WR011586.
138Xu, X. K., Kleidon, A., Miller, L., Wang, S. Q., Wang, L. Q., Dong, G. C. (2010). Late Quaternary glaciation in the Tianshan and implications for palaeoclimatic change: a review. Boreas, 39(2), 215-232. doi:10.1111/j.1502-3885.2009.00118.x.
139Xu, X. K., Yang, J. Q., Dong, G. C., Wang, L. Q., Miller, L. (2009). OSL dating of glacier extent during the Last Glacial and the Kanas Lake basin formation in Kanas River valley, Altai Mountains, China. Geomorphology, 112(3-4), 306-317. doi:10.1016/j.geomorph.2009.06.016.
140Ye, T., Zong, S., Kleidon, A., Yuan, W., Wang, Y., Shi, P. (2019). Impacts of climate warming, cultivar shifts, and phenological dates on rice growth period length in China after correction for seasonal shift effects. Climatic Change, 155(1), 127-143. doi:10.1007/s10584-019-02450-5.
141Zehe, E., Blume, T., Kleidon, A., Ehret, U., Scherer, U., Westhoff, M. (2013). A thermodynamic approach to link self-organization, preferential flow and rainfall–runoff behaviour. Hydrology and Earth System Sciences, 17, 4297-4322. doi:10.5194/hess-17-4297-2013.
142Zehe, E., Ehret, U., Pfister, L., Blume, T., Schroeder, B., Westhoff, M., Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K., Allroggen, N., Tronicke, J., van Schaik, L., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer, V., Kleidon, A. (2014). HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrology and Earth System Sciences, 18(11), 4635-4655. doi:10.5194/hess-18-4635-2014.
143Zehe, E., Loritz, R., Jackisch, C., Westhoff, M., Kleidon, A., Blume, T., Hassler, S. K., Savenije, H. H. (2019). Energy states of soil water – a thermodynamic perspective on soil water dynamics and storage-controlled streamflow generation in different landscapes. Hydrology and Earth System Sciences, 23(2), 971-987. doi:10.5194/hess-23-971-2019.
Directions | Disclaimer | Data Protection | Contact | Internal | Webmail | Local weather | PRINT | © 2011-2020 Max Planck Institute for Biogeochemistry