Max Planck Gesellschaft


The stable isotope laboratory (BGC-IsoLab) is tasked with stable isotope analyses of a host of different sample types. Equipped with 10 isotope ratio mass spectrometers (IRMS), the BGC-IsoLab routinely analyses δ18O, δ2H, δ13C and δ15N isotopic signatures in solids, liquids and gases. For example, the BGC-IsoLab analyses the isotopic signatures of atmospheric methane and carbon dioxide to produce long term records indicating changing sources and/or sinks of these two prominent greenhouse gases. Furthermore, the BGC-IsoLab analyses the O2/N2 ratio in atmospheric samples to monitor the changing atmospheric O2 concentration. Together with the BGC-GasLab the BGC-IsoLab routinely measures 11 parameters out of 1 liter sample flasks. The BGC-IsoLab aims to provide high quality measurements in order to depict/extract the small natural isotopic variations in atmospheric time series measurements.

Easy-to-understand fact sheet (pdf)
Allgemeinverständliches Informationsblatt (pdf)

left to right: Jürgen Richter, Heiko Moossen, Petra Linke, Michael Rothe, Heike Geilmann

Recent Publications

1Greule, M., Moossen, H., Lloyd, M. K., Geilmann, H., Brand, W. A., Eiler, J. M., Qi, H., Keppler, F. (2020). Three wood isotopic reference materials for delta2H and delta13C measurements of plant methoxy groups. Chemical Geology, 533: 119428. doi:10.1016/j.chemgeo.2019.119428.
2Pacheco-Labrador, J., Perez-Priego, O., El-Madany, T. S., Julitta, T., Rossini, M., Guan, J.-H., Moreno, G., Carvalhais, N., Martín, M. P., Gonzalez-Cascon, R., Kolle, O., Reichstein, M., van der Tolg, C., Carrara, A., Martini, D., Hammer, T. W., Moossen, H., Migliavacca, M. (2019). Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sensing of Environment, 234: 111362. doi:10.1016/j.rse.2019.111362.
3Rodionov, A., Lehndorff, E., Stremtan, C. C., Brand, W. A., Königshoven, H.-P., Amelung, W. (2019). Spatial microanalysis of natural 13C/12C abundance in environmental samples using laser ablation-isotope ratio mass spectrometry. Analytical Chemistry, 91(9), 6225-6232. doi:10.1021/acs.analchem.9b00892.
4Brewer, P. J., Kim, J. S., Lee, S., Tarasova, O. A., Viallon, J., Flores, E., Wielgosz, R. I., Shimosaka, T., Assonov, S., Allison, C. E., van der Veen, A. M. H., Hall, B., Crotwelli, A. M., Rhoderick, G. C., Hodges, J. T., Mohn, J., Zellweger, C., Moossen, H., Ebert, V., Griffith, D. W. T. (2019). Advances in reference materials and measurement techniques for greenhouse gas atmospheric observations. Metrologia, 56: 034006. doi:10.1088/1681-7575/ab1506.
5Koester, D., Villalobos, I. M. S., Jochmann, M. A., Brand, W. A., Schmidt, a. T. C. (2019). New concepts for the determination of oxidation efficiencies in liquid chromatography isotope ratio mass spectrometry. Analytical Chemistry, 91(8), 5067-5073. doi:10.1021/acs.analchem.8b05315.
Directions | Disclaimer | Data Protection | Contact | Internal | Webmail | Local weather | PRINT | © 2011-2020 Max Planck Institute for Biogeochemistry