Linking Isotopologue Specific Measurements to Existing International Mole Fraction Scales

Z. Loh1,2, P. Steele1,2, P. Krummel1,2, M. van der Schoot1,2, D. Etheridge1,2, and D. Spencer1,2

1Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria

2CSIRO Energy Transformed Flagship
How to calibrate?

- Instrument only sensitive to $^{12}\text{C}^{16}\text{O}^{16}\text{O}$ (& $^{12}\text{CH}_4$)
- Strictly, can only calibrate to those components
- Historically methods have measured ‘total’ CO$_2$
- Use of calibration gases with different isotopic ratios will lead to systematic (albeit small) errors in data
 - Demonstrated in two JGR papers, 2006 & 2009:

Effect of carbon isotopic variations on measured CO$_2$ abundances in reference gas mixtures

Jee-Yon Lee,1,2 Hee-Soo Yoo,1 Kurt Marti,3 Dong Min Moon,4 Jin Bok Lee,4 and Jin Seog Kim4

Theoretical and experimental evaluation of the isotope effect of NDIR analyzer on atmospheric CO$_2$ measurement

Yasunori Tohjima,1 Keiichi Katsumata,2 Isamu Morino,1 Hitoshi Mukai,1 Toshinobu Machida,1 Isao Akama,3 Taketo Amari,3 and Urumu Tsunogai4
Calibration proposal

• Isotopologue = distinct molecular species
• Create primary standards for each measureable isotopologue
• Archive primary data as 12C16O16O (and 12CH$_4$)
• Create a secondary record that accounts for remaining isotopologues
 • Explicit measurement where feasible (e.g. 13C16O16O)
 • Assumptions about fractional abundance and biogeochemical cycles
• This secondary record should be comparable with current data

• Why do it this way?
 • Clearer where the uncertainties are
 • As it becomes possible to measure additional isotopologues, these can be accommodated naturally in the record
Calibration strategy #1: isotopically pure gases

1. Prepare a new calibration suite from isotopically pure gas samples (12C) in zero air.
2. Measure [CH$_4$] and [CO$_2$] on GC to tie to pre-existing scales.
3. Assume GC response is isotopologue independent.
4. Use these data to check the Picarro isotopos instrument 13CO$_2$ response and confirm 12CO$_2$ response is zero.
5. Check against LoFlo and other calibrations suites that have been characterised for total [CO$_2$] and on IRMS.
6. Use these data to calibrate Picarro CO$_2$/CH$_4$ response in 13CH$_4$ & 12CO$_2$ domains.
7. Measure [CH$_4$] and [CO$_2$] on both cavity ringdown instruments.
8. Use calibrated Picarro CO$_2$/CH$_4$ to transfer the 13C scale in both CH$_4$ and CO$_2$ to working air standards.
Isotopically pure standards

• Isotopically pure standard created in-house

• GC measurement determines CO$_2$ value

• Assume since isotopically pure material was used, GC numbers are 12C numbers

• Calibrate Picarro to the isotopically pure standard

• Check Picarro measurements of other tanks are lower than the known concentrations for ‘total CO$_2$’ and ‘total CH$_4$’ by the expected amount
 - can be calculated with IRMS measurement of δ^{13}C/ δ^{18}O for calibration gas
Calibration strategy #2: partitioning the total CO₂

- Assume GC isotopologue independent
- GC & IRMS: total CO₂ partitioned into three major isotopologues

\[^{12}\text{C}^{16}\text{O}^{16}\text{O} = \alpha; \]
\[^{13}\text{C}^{16}\text{O}^{16}\text{O} = \beta; \]
\[^{12}\text{C}^{18}\text{O}^{16}\text{O} = \gamma; \]

\[\text{GC}[\text{CO}_2] = \text{TOT}_- \text{CO}_2 = \kappa \approx \alpha + \beta + 2\gamma \]

\[r^{13} \approx \frac{^{13}\text{C}^{16}\text{O}^{16}\text{O}}{^{12}\text{C}^{16}\text{O}^{16}\text{O}} = \frac{\beta}{\alpha} \]

\[r^{18} \approx \frac{^{12}\text{C}^{18}\text{O}^{16}\text{O}}{^{12}\text{C}^{16}\text{O}^{16}\text{O}} = \frac{\gamma}{\alpha} \]

\[\delta^{13}\text{C}_{\text{VPDB, CO}_2} = \left[\frac{r^{13}}{r^{13}} - 1 \right] \times 10^{3}; \]

\[r^{13} = r^{13}_{\text{VPDB, CO}_2} = 0.011237200; \]

\[r^{13} = r^{13}_{\text{VPDB, CO}_2} \left[\left(\delta^{13}\text{C}_{\text{VPDB, CO}_2} \times 10^{-3} \right) + 1 \right] = \epsilon \]

\[\delta^{18}\text{O}_{\text{VPDB, CO}_2} = \left[\frac{r^{18}}{r^{18}} - 1 \right] \times 10^{3}; \]

\[r^{18} = r^{18}_{\text{VPDB, CO}_2} = 0.002088349; \]

\[r^{18} = r^{18}_{\text{VPDB, CO}_2} \left[\left(\delta^{18}\text{O}_{\text{VPDB, CO}_2} \times 10^{-3} \right) + 1 \right] = \phi \]

\[\alpha = \frac{\kappa}{1 + \epsilon + 2\phi}; \beta = \frac{\epsilon\kappa}{1 + \epsilon + 2\phi}; 2\gamma = \frac{2\phi\kappa}{1 + \epsilon + 2\phi} \]
LoFlo/Picarro ambient record in an urban environment

- Rigorous test – dirty and highly variable environment
- Missing data are periodic calibrations and tank measurements
- Picarro data lower than LoFlo data
Picarro calibration

- Based on the suite of CSIRO GASLAB laboratory standards that are tied to the LoFlo 2b instrument.

- These tanks have been measured at NOAA and are on the WMO07x scale.

- All seven tanks (span 320 – 460 ppm) were produced from ambient air and are isotopically identical to within 0.5‰

- MAT252 measurements of $\delta^{13}C$ and $\delta^{18}O$ are used to extract $^{12}CO_2$ fraction

- Picarro calibrated to $^{12}CO_2$ fraction.
Picarro calibration to $^{12}\text{CO}_2$ fraction of LoFlo2b laboratory primary suite

- Picarro response function linear over 320 – 460 ppm

- Picarro calibrated to $^{12}\text{CO}_2$ fraction
 - Picarro measurement should be ~1.5% lower than LoFlo measurement
Hourly matched data

Expected difference = -1.5%
Mean difference = -1.48 ± 0.07%
Conclusions

• Sound metrology suggests we should calibrate isotopologue specific measurements to an isotopologue specific scale

• Such an approach:
 • eliminates systematic errors associated with variable isotopic composition of calibration standards
 • requires linkages to current mole fraction scales

• Two complementary strategies have been described
• One strategy has been implemented in an overlap experiment with a LoFlo NDIR instrument