Is it time for a WMO Hydrogen calibration scale?

Armin Jordan and Bert Steinberg

Max-Planck-Institute for Biogeochemistry
07745 Jena, Germany

15th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracer Measurement Techniques
Jena, September 7th, 2009
R10.2 Recommendations

a) A concerted effort to consolidate the NOAA, CSIRO/AGAGE, EuroHydros and other calibration activities is urgently needed to enable a collaborative global network for hydrogen measurements. These measurement groups are strongly encouraged to establish a common calibration scale. This scale should cover the range from 350-1000 ppb. As part of this effort the existing scales need to be harmonized ..
No global supplier of H$_2$ standard gases
H$_2$ mixing ratios unstable in AL150 type cylinders

H$_2$ drift rates

CA01601: 3.5 ppb/yr → 0.9 ppb/yr
CA01650: 10 ppb/yr → 1.8 ppb/yr
Observed H$_2$ stability depending on cylinder type

- Total increase < 4 ppb
- Total increase > 4 ppb
- Median of cylinder type

H$_2$ drift rate [ppb/yr]

- Luxfer US N150 - 29l
- Scott Marrin
- Luxfer US N265 46l
- Conwin
- Luxfer UK AA6061 50l
- Luxfer UK AA6061 20l
- Steel, Stainless
- Various
Dependence of standard stability on alloy

![Graph showing the dependence of standard stability on alloy]

Registered International Designation

<table>
<thead>
<tr>
<th>No.</th>
<th>Data</th>
<th>By</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Cr</th>
<th>Ni</th>
<th>Zn</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>6061</td>
<td>1954</td>
<td>USA</td>
<td>0.40-0.8</td>
<td>0.7</td>
<td>0.15-0.40</td>
<td>0.15</td>
<td>0.8-1.2</td>
<td>0.04-0.35</td>
<td>...</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>2001</td>
<td>1979</td>
<td>FRANCE</td>
<td>0.20</td>
<td>0.20</td>
<td>5.2-6.0</td>
<td>0.15-0.50</td>
<td>0.20-0.45</td>
<td>0.10</td>
<td>0.05</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>7060</td>
<td>1986</td>
<td>FRANCE</td>
<td>0.15</td>
<td>0.20</td>
<td>1.8-2.6</td>
<td>0.20</td>
<td>1.3-2.1</td>
<td>0.15-0.25</td>
<td>...</td>
<td>6.1-7.5</td>
<td>0.05</td>
</tr>
</tbody>
</table>
H₂ Monitoring Networks

http://agage.eas.gatech.edu/

Novelli et al. (1999), JGR104, 30,427
EuroHydros calibration activities:
Standard preparation by precise mixing of \(\text{H}_2 \) in air

\[
\text{moles } \text{H}_2 = \frac{344.6 \ \mu\text{l} \times 99226 \ \text{Pa}}{(297.87 \ \text{K} \times 8314.5 \ (\text{Pa} \times \text{L}/\text{K} \times \text{mol}))} \\
\text{moles air} = \frac{639.7 \ \text{g}}{28.965 \ \text{g/mol}} \\
\Rightarrow [\text{H}_2] = 625.6 \ \text{ppb}
\]
Preparation of standard gases by precise mixing of H₂ in air

\[[H_2] = 625.6 \text{ ppb} \]

\[\rightarrow 28.973 \text{ mV} \]
Interfering factors for accuracy of standards

RGA response dependent on oxygen content of gas:
peak height decreases with increasing O_2

Hydrogen depletion by diffusion into Valcon E polymer
→ no H_2 depletion with Valcon M rotor
Non-linearity of RGA response function
RGA response function fit

\[f = a \cdot x + b \cdot x^2 + c \cdot (1 - e^{-d \cdot x}) \]
Accuracy limits from sensors and balances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Abs. Uncertainty</th>
<th>Result</th>
<th>Rel. Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>0.15 mbar</td>
<td>1000 mbar</td>
<td>0.015%</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.1-0.2 K</td>
<td>295 K</td>
<td>0.05%</td>
</tr>
<tr>
<td>Volume</td>
<td>0.2 µl</td>
<td>344 µl</td>
<td>0.06%</td>
</tr>
<tr>
<td>Mass</td>
<td>0.1-0.2 g</td>
<td>200-600 g</td>
<td>0.02-0.1%</td>
</tr>
</tbody>
</table>

Single mixtures uncertainty: 0.1 - 0.3 % (~no of dilutions)

Instruments

- **Pressure**
 - GE Druck DPI 142

- **Temperature**
 - Greising GTF175

- **Volume**
 - Mettler AT261

- **Air Mass**
 - Sartorius 8201-0CE
Accuracy of transfer of mixing ratios

variability of repeated analysis of 13 EuroHydros calibration standards

reproducibility:
300 - 800 ppb < 0.25%
140 - 1200 ppb < 0.6%
Stability of RGA response Sept-Nov 2008

Quality Control record

std. dev. of daily means
510 ppb: 0.2 %
1190 ppb: 0.35 %
CSIRO94 scale \rightarrow MPI2009 scale

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Essex</td>
<td>35</td>
<td>60</td>
<td>SS</td>
<td>26.04.2007</td>
<td>135</td>
<td>139</td>
</tr>
<tr>
<td>Graeven</td>
<td>50</td>
<td>25</td>
<td>SS</td>
<td>13.02.2007</td>
<td>273</td>
<td>290</td>
</tr>
<tr>
<td>Graeven</td>
<td>27</td>
<td>25</td>
<td>SS</td>
<td>07.02.2007</td>
<td>399</td>
<td>416</td>
</tr>
<tr>
<td>Essex</td>
<td>35</td>
<td>60</td>
<td>SS</td>
<td>22.08.2004</td>
<td>456</td>
<td>471</td>
</tr>
<tr>
<td>Essex</td>
<td>35</td>
<td>60</td>
<td>SS</td>
<td>04.08.2004</td>
<td>492</td>
<td>508</td>
</tr>
<tr>
<td>Linde</td>
<td>50</td>
<td>200</td>
<td>SS</td>
<td>10.06.2003</td>
<td>512</td>
<td>529</td>
</tr>
<tr>
<td>Linde</td>
<td>50</td>
<td>200</td>
<td>Alu</td>
<td>22.11.2004</td>
<td>562</td>
<td>581</td>
</tr>
<tr>
<td>Linde</td>
<td>50</td>
<td>200</td>
<td>SS</td>
<td>22.02.2007</td>
<td>604</td>
<td>622</td>
</tr>
<tr>
<td>Essex</td>
<td>35</td>
<td>60</td>
<td>SS</td>
<td>10.12.2005</td>
<td>664</td>
<td>685</td>
</tr>
<tr>
<td>Graeven</td>
<td>50</td>
<td>25</td>
<td>SS</td>
<td>15.02.2007</td>
<td>730</td>
<td>753</td>
</tr>
<tr>
<td>Graeven</td>
<td>27</td>
<td>25</td>
<td>SS</td>
<td>07.02.2007</td>
<td>824</td>
<td>853</td>
</tr>
<tr>
<td>Graeven</td>
<td>50</td>
<td>25</td>
<td>SS</td>
<td>09.02.2007</td>
<td>935</td>
<td>971</td>
</tr>
<tr>
<td>Graeven</td>
<td>27</td>
<td>25</td>
<td>SS</td>
<td>05.04.2006</td>
<td>1183</td>
<td>1219</td>
</tr>
</tbody>
</table>

difference @ 500 ppb = 16 ppb
Scale comparison with CSIRO94 and NOAA2008

NOAA-MPI = 7.2 ± 1.1 ppb

CSIRO-MPI = 16.8 ± 1.8 ppb
Summary

• most common cylinders for trace gas standards H₂ usually not suitable for H₂ standards
• steel cylinders do generally not cause H₂ drifts, cylinders of aluminium alloys appear promising
• procedure to prepare reference gas mixtures with adequate accuracy
• scale difference to NOAA2008 = 7 ppb
• scale difference to CSIRO = 17 ppb
• offsets have been stable to NOAA in 2008-2009 and in various longterm intercomparision exercises with CSIRO

⇒ preconditions for coming to a common calibration scale now fulfilled
Thank you and many thanks to

Ray Langenfelds and Paul Steele (CSIRO)
Paul Novelli (NOAA)
 for valuable discussion and good cooperation
Bert Steinberg, Frank Hilbert, Michael Targan
 for lab support preparing the reference mixtures
Michael Hielscher
 for database support

EU funding: FP6-2005-Global-4, Eurohydros Contract Nr. 036916