A new concept for isotope ratio monitoring LC/MS

A Wide Range of Applications

Andreas Hilkert, Dieter Juchelka, Michael Krummen

Thermo Electron (Bremen) GmbH

Overview

- Introduction in Isotope Ratio Monitoring-LC/MS (irm-LC/MS)
 - Technology
 - Operating Modes
- New Applications by *irm*-LC/MS
 - Authenticity Control
 - Detection of adulteration by sugars in honey.
 - Determination of Origin
 - Differentiation of analgesic drugs.
 - Molecular Biology
 - Carbon isotopic characterization of rRNA.
 - Biogeochemistry
 - Plant metabolism study of organic acids.
 - Forensic Chemistry
 - · Analysis of aspartic acid in cadaver blood samples.

Why irm – LC/MS ?

• δ^{13} C analysis of individual compounds with:

- High molecular weight
- High polarity
- Thermal instability
- Low vapour pressure
- Less sample preparation
- No derivatization
- No isotope dilution
- Less risk of fractionation

Comparison between irm GC/MS and irm LC/MS

• irm – GC/MS

- Helium as carrier for
 - Separation of compounds
 - Transfer to the IRMS
- Helium has
 - No impact on combustion
 - No effects in the IRMS

Dry combustion (oxidation) in the He phase

Comparison between irm GC/MS and irm LC/MS

irm-LC/MS (first strategy)

- Solvents as carrier for
 - Separation of compounds
- Solvents are
 - Oxidized
 - Hazardous to IRMS
- No solvents to reactor or IRMS

First approaches ('91, '93)

- -"Moving Wire" Drying system (difficult to use)
- "Particle Beam" Separation (low sensitivity, fractionation)

A New Strategy

Scheme of the LC IsoLink Interface

ELECTRON CORPORATION

HPLC Resolution

- Oxidation reagent:
 - 60 µl/min (NH₄)₂S₂O₈, 100g/l
- Column:
 - 700 CH Carbohydrate Column, 90 °C
- Reactor:
 - 99.9 °C
- CO₂ Exchanger:
 - 1 ml/min He flow

Authenticity Control of Honey

Investigation of the adulteration of honey analyzing glucose, sucrose, fructose

Source Differentiation of Drugs

Determination of different analgesic compounds.

 δ^{13} C of Paracetamol (Acetamidophenol) and Aspirin[®] (Acetylsalicylic Acid; ASA).

	-	δ ¹³ C (‰)	
Tablet Type	Paracetamol	ASA	μ-EA
A _{Country1}	-	-34.2	-33.4
A _{Country2}	-	-34.2	-33.5
В	-	-29.1	-27.6
С	-	-27.2	-26.6
D ₁	-	-26.8	-26.7
Е	-	-27.7	-27.6
F	-32.3	-32.6	-31.7
D ₂	-28.7	-33.8	-31.3
G	-29.2	-32.7	-29.7

- Tablet type A has the same origin
- 4 sources of ASA
- Producer D use different ASA sources

μ-EA – Direct Injecton

Fast analysis of all water soluble compounds

Analysis of a tablet followed by direct loop injection (μ -EA). Loop size of the HPLC injector was 5 uL, the loop size of the μ -EA injector was 10 uL, which results in two-fold response of the μ -EA peak

μ-EA – Reproducibility

Bulk Injection of Amphetamine

m/z 44 (mV)

	Amount				
Sample	Amphetamine	Carbon	δ^{13} C	S.D.	n
	(ng)	(ng)	(‰)	(‰)	
#1	218	174	-28.70	0.04	5
	452	362	-28.76	0.04	5
	698	558	-28.83	0.03	5
	944	756	-28.87	0.03	5
	1161	929	-28.76	0.03	5
	1359	1088	-28.67	0.02	5
	2280	1824	-28.70	0.02	5
Mean			-28.76	0.03	
					•
#2	732	586	-32.23	0.04	5
#3	438	350	-31.58	0.04	5
#4	781	625	-27.89	0.03	5

e.g., 5 x bulk injections of 218 ng amphetamine

Reliable reproducibility of the δ^{13} C values

irm-LC/MS of NaOH-hydrolyzed E. coli RNA

Carbon Isotopic Composition of Individual Peaks from NaOH-hydrolyzed E. coli RNA

⇒ The carbon isotopic composition of RNA closely reflects that of the growth substrate.

δ^{13} C Analysis of Fruit Juice Organic Acids

$\delta^{13}\text{C}$ Analysis of Organic Acids

Analyze • Detect • Measure • Control™

ELECTRON CORPORATION

irm-LC/MS: δ¹³C Analysis of an Extract of *Geranium pratense* (May 2004)

Plant metabolism study of organic acids

Analysis of Volatile Fatty Acids by irm-LC/MS

Data: Prof. Hinrichs Univ. Bremen

Linearity of the IRMS - Signal

Amounts injected : 8.8 nmol – 0.28 nmol

δ^{13} C Analysis of Aspartic Acid in Cadaver Blood

- Mobile Phase: $10 \text{mM NaH}_2\text{PO}_4^*\text{H}_2\text{O}$, pH 4.7, Flow: $300 \text{ }\mu\text{l/min}$
- HPLC Column: Nova-Pack[®] C18, 60 Å (4 μm, 3.9 mm x 300 mm).

- *irm*–LC/MS opens a wide range of interesting applications.
- Macromolecules, non-volatile components and components which tend to decompose are directly accessible for precise isotopic analysis.

Acknowledgements

- Barbara J. MacGregor and Adam Friedman, Department of Marine Sciences, University of North Carolina, Chapel Hill, N.C.
- Elena Hettmann and Gerd Gleixner, Max–Planck–Institut f
 ür Biogeochemie, Jena
- Jean-Philippe Godin and Jörg Hau, Nestlé Research Center, Lausanne
- Kurt-Peter Raezke, APPLICA GmbH, Bremen

