GASIR Annual Meeting 2005 October 10-12, Jena

"Carbon Isotope Anomaly in the major Plant C₁ Pool and its Biogeochemical Implications"

Frank Keppler

Max-Planck-Institut für Kernphysik in Heidelberg

Relative Isotope Abundance: δ-notation definition

Isotopic compositions are usually expressed in term of δ values which are parts per thousand deviations from a standard. Delta notation: a convenient expression for small differences

 $\delta^{13}C = \{ \begin{array}{c} {}^{13}R_{Sample} - {}^{13}R_{Standard} \\ \hline {}^{13}R_{Standard} \\ \end{array} \} \bullet 1000$

¹³R = abundance (¹³C) / abundance (¹²C)
'Unit': [‰] ('per mil') = per thousand deviation from a reference ratio

Please note: In this presentation carbon isotope ratios ($\delta^{13}C$ are reported on the Vienna-PDB scale!

Furthermore...

• Differences in bulk δ^{13} C of different plant parts (e.g. leaves, roots) are common (often in the range of 1–3‰)

• Differences in δ^{13} C among plant compounds (e.g. cellulose, lignin are also common; often in the range of 1–5‰)

Measurement	C ₃ (‰)	C ₄ (‰)	Reference	Comments
Cellulose – lignin Cellulose – lignin Cellulose – lignin Cellulose – lignin	3.5 4.1±0.6 4.6 2.5	6.2 ± 0.9 5.1	Wilson & Grinsted (1977) Benner <i>et al.</i> (1987) Schweizer <i>et al.</i> (1999) Schweizer <i>et al.</i> (1999)	Wood Various tissues Leaves Roots

 Table taken from Hobbie & Werner 2004

The major chemical component of a living plant is water, but on a dry weight basis, all plant cell walls consist mainly of sugar-based polymers (carbohydrates including cellulose, hemicellulose, pectin) that are combined with lignin with lesser amounts of extractives, protein, starch, and inorganics.

Pectin is a major component of the cell wall in plants:

- Polymer of around 200 galacturonic acid molecules
- Many of the carboxyl groups are methylated (COOCH₃), 50-90%
- Pectin normally comprises between 7 and 35% of cell wall material in leaves
- Methoxyl groups (OCH₃) constitute up to 6% on a dry weight basis

Lignin defines the polymeric material located in the woody cell wall "the glue that holds plant together"

- lignin, cellulose and hemicellulose are the major fractions in wood
- lignin confers strength and rigidity to the woody cell wall of plants
- up to 30-40% on a dry weight basis in woody tissue, less in non-woody tissue
- rich in methoxyl groups (OCH₃), up to 15-20 % on a dry weight basis

Methoxyl groups in terrestrial plants (including ester and ether groups) comprise *ca* 2.5% of carbon in plant biomass!!!

The carbon isotope signature of methoxyl groups in plants?

Pectin

δ^{13} C values of methoxyl groups of plant tissue from woods

Plant common name (species)	Biomass (B) (δ ¹³ C)	$\begin{array}{c} \text{Lignin methoxyl (LM)} \\ (\delta^{13}\text{C}) \end{array}$	$\begin{array}{c} \Delta^{13} \mathbf{C} \ \textbf{(LM-B)} \\ (\delta^{13} \mathbf{C}_{LM} - \delta^{13} \mathbf{C}_B) \end{array}$	$\begin{array}{c} {\rm Pectin\ methoxyl\ (PM)}\\ (\delta^{13}{\rm C}) \end{array}$	$\begin{array}{c} \Delta^{13}\mathbf{C} \ (\mathbf{PM}\textbf{-B}) \\ (\delta^{13}\mathbf{C}_{PM} - \delta^{13}\mathbf{C}_B) \end{array}$
C3-wood ²					
European ash (Fraxinus excelsior)	-24.5 ± 0.7	-36.9 ± 1.2	-12.4	-43.1 ± 0.6	-18.6
English oak (Quercus robur)	-29.4 ± 0.2	-41.1 ± 1.3	-11.7	-44.2 ± 1.2	-14.8
Sweet osmanthus (Osmanthus fragans)	-27.3 ± 0.1	-41.7±1.2	-14.7	-53.3 ± 1.1	-26.0
Geronggang (Cratoxylum sp)	-26.5 ± 0.3	-39.5	-13.0	n.d.	-
Tasmanian oak (Eucalyptus delegatensis)	-26.3 ± 0.2	-37.7	-11.4	-45.4±0.7	-18.1
Dark red meranti (Shorea sp)	-28.2 ± 0.2	-44.0	-15.8	-45.6±0.3	-17.4
Utile (Entandrophragma utile)	-27.1 ± 0.2	-39.5	-12.4	n.d.	-
Mean of wood	-27.1	-40.1	-13.0	-46.3	-19.2

Data from Keppler et al. 2004

Please note: the isotope difference between two pools is here defined as

$$\Delta = \delta^{13} C_{pool 1} - \delta^{13} C_{pool 2}$$

Biochemical rationale?

Work on purine alkaloids in several plant species has suggested that the methyl pool in SAM (S-adenosylmethionine) is significantly depleted ($\delta^{13}C \le -39\%$) relative to the carbohydrate pool ($\delta^{13}C = -27\%$).

Weilacher, T., Gleixner, G. & Schmidt, H.L. Carbon isotope pattern in purine alkaloids a key to isotope discriminations in C1 compounds. *Phytochemistry* **41**, 1073-1077 (1996).

δ^{13} C values of methoxyl groups of leaf tissue from trees, grasses and halophytes including plants from C₃, C₄ and CAM plant categories

Plant common name (species)	Biomass (B) (δ ¹³ C)	$\begin{array}{c} \text{Lignin methoxyl (LM)} \\ (\delta^{13}\text{C}) \end{array}$	$\begin{array}{c} \Delta^{13}\mathbf{C} \ \textbf{(LM-B)} \\ (\delta^{13}\mathbf{C}_{LM} - \delta^{13}\mathbf{C}_B) \end{array}$	Pectin methoxyl (PM) $(\delta^{13}C)$	$\begin{array}{c} \Delta^{13}\mathbf{C} \ (\mathbf{PM-B}) \\ (\delta^{13}\mathbf{C}_{PM} - \delta^{13}\mathbf{C}_B) \end{array}$
C ₃ -leaf ³					
European ash (Fraxinus excelsior)	-27.9 ± 0.2	-65.5	-37.6	-73.7±1.0	-45.8
English oak (Quercus robur)	-30.8 ± 0.1	-62.2	-31.4	-69.2±0.3	-38.4
European beech (Fagus sylvatica)	-31.8 ± 0.2	-66.2	-34.4	-68.2 ± 1.0	-36.4
Norway maple (Acer platanoides)	-33.6 ± 0.2	-61.4	-27.8	-63.1 ± 0.6	-29.5
Scots pine (Pinus sylvestris)	-27.6 ± 0.1	-51.7	-24.1	-53.7±0.3	-26.1
Cocksfoot grass (Dactylis glomerata)	-29.3 ± 0.2	-53.5	-24.2	-50.7 ± 0.2	-21.4
Mean of C ₃ -leaves	-30.2	-60.1	-29.9	-63.1	-32.9
C ₄ -leaf					
Sugar cane (Saccharum officinarum) ⁴	-11.9 ± 0.1	-42.1	-30.2	-36.0 ± 0.9	-24.1
Savanna grass (Hyparrhenia sp)5	-12.8 ± 0.2	-33.1	-20.2	n.d.	_
Maize (Zea mays) ⁶	-11.0 ± 0.1	-47.3	-36.3	-40.5±0.6	-29.5
CAM-leaf					
Saltwort (Batis maritima) ⁶	-25.6 ± 0.4	-52.4	-25.7	-63.3 ± 0.4	-37.3
Scarlet paintbrush (Crassula falcata) ⁶	-17.9 ± 0.1	-49.6	-31.7	-51.1±0.5	-33.2
Mean of C ₃ , C ₄ and CAM leaves			-29.0		-32.2

Data from Keppler et al. 2004

Biogeochemical implications?

Explanation for the widely reported ¹³C depletion of lignin relative to other major plant components (e.g. Benner et al., 1987; Schweizer et al., 1999; Fernandez et al., 2003; Hobbie and Werner, 2004)

Figure taken from Hobbie & Werner 2004

Leaves and grasses:

the much larger depletion observed in methoxyl carbon in leaves and grasses (in the range of -20 to -38%) provides an explanation for the 3-7‰ ¹³C depletion of lignin relative to bulk biomass in leaves of both C₃ and C₄ plants.

A common origin of C_1 volatiles! Most biospheric C_1 volatiles such as methanol, chloromethane, bromomethane, and possibly methane (?)

have a common (parent) plant source! 'methoxyl pool'

Conclusion / Outlook

• The isotope anomaly should prove not only an invaluable tool in tracing the path of such C_1 carbon in the environment but also provide a new insight into the global cycling of many C_1 atmospheric trace gases and the biochemical pathways involved.

 Methoxyl groups could act as markers for biological activity in organic matter of terrestrial and extraterrestrial origin

(The striking depletion of δ^{13} C in methoxyl carbon consequent on the biochemistry of C1 metabolism in plants may well extend to many other organisms which utilise S-adenosylmethionine as a methyl donor in *O*-methyltransferase reactions)

"Acknowledgment"

David Harper

Jack Hamilton

Bob Kalin

Colin McRoberts

... and many helpful hands

Reminder:

Poster by

F. Keppler, D. Harper, T. Röckmann and J. Hamilton

entitled:

"New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios" European Commission DG Research - Improving The Human Research Potential

This Research was Supported through a European Community Marie Curie Fellowship

For further information:

http://www.cordis.lu/improving

Disclaimer: the European Commission is not responsible for any views or results expressed.