Utilisation of doubly stable isotope labelled *Lactobacillus johnsonii* in humans

Klaus D. Wutzke, I. Oetjens

University of Rostock Children's Hospital, Research Laboratory, Germany

www.kinderklinik-rostock.de, Forschungslabor'

Introduction

- Lactobacillus johnsonii (La1), a probiotic lactobacillus strain of human origin, is able to adhere to the intestinal mucosa.
- One of the important properties of probiotics is the ability to survive in the intestine.
- For evaluation of this phenomenon, La1 was used for doubly labelling with ¹⁵N and ¹³C to investigate the digestion of orally administrated dlLa1 in humans.

Aim of the Study

- Investigation of the metabolic fate of doubly ¹³C-, ¹⁵N-labelled Lactobacillus johnsonii (dlLa1)
 - the ¹³CO₂-exhalation,
 - the urinary and faecal ¹³C- and ¹⁵N-excretion, respectively,
 - and the corresponding isotopic enrichment of specific blood plasma fractions.
 - Furthermore, the data were correlated to the orocaecal transit time (OCTT).

Material and Methods

- Universal labelling of La1 with ¹³C and ¹⁵N by fermentation (Biostad, Braun, Melsungen, Germany) in a medium containing
 - [U-15N]yeast extract (prior labelled by [15N]H4Cl) and
 - [U-13C₆]glucose (Campro Scientific, Berlin)
- dlLa1- and raffinose-administration
 - 10 healthy subjects, mean age 25.9 years, mean BMI: 23.4
 - 8.00 a.m. together with breakfast
 - dosage: 90 mg wet vital dlLa1/ kg body weight + 10 g raffinose
- Sample collection
 - Breath (14 h), urine (48 h), faeces (48 h), blood (2 h)
- ¹³C- and ¹⁵N-measurement by IRMS (Tracer-mass 20-20, SerCon, Crewe, U.K., FANci2, Fischer ANalysen Instrumente Leipzig)
- Evaluation of OCTT by a raffinose H₂-breath test (Stimotron, Wendelstein, Germany)

Results

OCTT measurements by a raffinose-H₂-breath test

¹³CO₂-Enrichment and cumulative percentage exhalation

¹⁵N-enrichment of urinary total-N and urinary ammonia

Isotope enrichment in different fractions of the blood

Percentage total ¹⁵N-excretion and ¹⁵N-incorporation

■ renal **■** faecal **■** incorporation

Percentage total ¹³C-excretion and ¹³C-incorporation

■ expiratory **■** renal **■** faecal **■** incorporation

Conclusion

- In comparison to the OCTT of 3.7 h both stable isotopes appear after 30 min in breath and urine indicating that dlLa1 is rapidly digested in the small bowel before reaching the caecum.
- This is confirmed by ¹³C-and ¹⁵N-enrichments of blood plasma fractions.
- The ingestion of dlLa1 led to an excretion of 50% of both stable isotopes.
- Our combination of measuring the expiratory, urinary and faecal excretion of ¹³C- and ¹⁵N-enriched metabolic degradation products of doubly labelled *Lactobacillus johnsonii* in correlation to the orocaecal transit time is a novelty.
- Wutzke & Oetjens: Eur J Clin Nutr 2005, Jul 20 [Epub ahead of print], doi:10.1038/sj.ejcn.1602227