NMR (isotopomer distributions) in Biogeochemistry

Jürgen Schleucher Department of Medical Biochemistry & Biophysics Umeå University, Sweden jurgen.schleucher@chem.umu.se

Outline

- Definition of Isotopomers
- Measurement techniques (principle, advantages)
 - off-line breakdown + IRMS
 - on-line breakdown-IRMS
 - light spectroscopy
- NMR
- Deuterium
 - climate and physiological signals from tree rings
 - persistent organochlorines
- Appetizers: ¹³C: glucose, ¹⁵N: N₂O
- Conclusions
- Poster on liquid water / biological activity in frozen soils

Isotope effects cause isotopomer distributions

- Chemical isotope effects deplete isotopes in non-equivalent groups (isotopomers).
- The abundance of isotopomers can be described by isotopomer distributions (positional/sitespecific δ value/isotope ratio).
- Wherever you look: Non-random isotopomer distributions.

- ~40% depletion of C2-H in starch, linked to metabolic regulation (PGI).
- Depletes whole molecule by ~-60 ‰.
 δ difference cannot be interpreted alone.
- Express isotopomer distributions as relative abundance of isotopomer i A_i, so that the average is one. Then
- $\delta_i = (\delta_{whole molecule} + 1000) * A_i 1000$
- No reference materials yet for isotopomer distributions.

Measuring Isotopomer Abundances

Normally, isotope ratio MS measures the average isotope abundance of a whole metabolite.

Techniques to measure Isotopomer abundances:

- off-line breakdown + IRMS
- breakdown coupled online to IRMS
- Light-spectroscopic techniques
- NMR

Principle, experimental setup, advantages / disadvantages

Off-line breakdown and IRMS

- Quantitative chemical breakdown, from isotope labelling (Floss and Simon).
- ¹³C pattern of glucose reflects metabolic branching (Gleixner & Schmidt).
- + Broad applicability.
- Specific for each compound.
- Extremely labor-intensive.

Schema 18. Abbau von Glucose und anderen Hexosen nach SIMON und STEFFENS (678)

Pyrolysis-GC-IRMS

Compound is fragmented, the fragments separated and online individually analysed in the IRMS.

FIG. 1. Experimental system for online PSIA. Capillary GC-I separates the target compound from the mixture, passes it into a hollow, deactivated fused-silica tube pyrolysis furnace held at about 550°C. Fragments pass through the heated transfer line to GC-II with the oven cooled to -40° C for collection and focusing. After separation, fragments can be directed by valving to (*i*) an FID, (*ii*) a Varian QISMS ion trap MS for structural analysis, or (*iii*) a combustion/water-trap/open-split interface to a Finnigan-MAT model 252 IRMS for high-precision isotopic analysis.

Summary: Pyrolysis GC-IRMS

- + Small sample amounts.
- + Fast!
- Conditions for each compound needed.
- Isotope effects during breakdown.
- Isotope scrambling is a big problem, especially for D.
- Not isotope-specific, but mass-specific.
 Cross-talk, for example between *isotopologes* ¹⁵N¹⁶O and ¹⁴N¹⁷O.

FTIR: experimental setup

Fig. 1. Schematic of the low resolution FTIR instrument for trace gas analysis.

IR spectra of N₂O isotopomers and isotopologes

Absorbance

Fig. 7. High resolution (0.005 cm⁻¹) FTIR absorbance spectra of the individual isotopomers of N₂O, ${}^{14}N^{14}N^{16}O$, ${}^{14}N^{15}N^{16}O$, ${}^{15}N^{16}O$, ${}^{14}N^{14}N^{16}O$, ${}^{14}N^{14}N^{16}O$, ${}^{14}N^{14}N^{16}O$, ${}^{14}N^{14}N^{16}O$, ${}^{14}N^{16}N^{16}O$, ${}^{14}N^{16}O$, ${}^{14}N^{16}N^{16}O$, ${}^{14}N^$

Light spectroscopy

- Each isotopomer has a distinct IR spectrum.
- Spectra overlap, but can be resolved at high resolution.
- + No fragmentation of molecule
- + Sensitive
- Only small molecules, because measurement in gas phase and spectral overlap.
- Used to measure OO¹⁸O / O¹⁸OO and ¹⁵NNO / N¹⁵NO

NMR

- Nuclei of many isotopes behave like induced magnets in an external magnetic field.
- Radiofrequency pulses "rotate magnets", which then oscillate and emit radiofrequency.
- Detect radiofrequency, Fourier transform > spectrum.

NMR setup

NMR electronics and magnet.

Sample in 500 µl solution in glass tube.

Spectra of NMR isotopes

- Sensitivity, quality of spectra given by nuclear properties: ${}^{1}H > ({}^{19}F, {}^{31}P) > {}^{2}H > {}^{13}C > {}^{15}N >>> {}^{17}O.$
- 100000-fold expansion: ²H spectrum.
- One signal per isotopomer.
- Integrals reflect isotopomer abundance.

Integrating ²H NMR spectra

- Determine parameters for integrateable spectra.
- Assure pure Lorentzian lineshapes.
- Lineshape fit, accuracy limited by S/N

NMR: advantages and disadvantages

- + Intact molecule is analysed \Rightarrow no fractionation.
- + Molecule-specific setup relatively simple.
- + NMR can resolve CHD and CDH isotopomers.
- + NMR is isotope-specific, ²H and ¹³C abundances do not interfere with each other.
- Low sensitivity
- Measures ONLY intramolecular distribution, no difference method SAMPLE-STANDARD available.

Isotopomer distributions: ²H

- Variation $\approx 500\%$
- NMR, breakdown + IRMS
- Alcohols, amino acids, terpenes / aromes, fatty acids, sugars, alkaloids, organochlorines.
- Several Mechanisms: Source water δ , evapotranspiration, kinetic isotope effects, enzyme-catalysed exchange.

Four fractionation mechanisms in plants

D abundance of precipitation: climate signal

H/D exchange experiment on trees

- Grow oak and spruce with D-enriched water.
- Create D gradient in plants.
- Compare labelling of soluble sugars and tree rings.

Leaf-level isotopomer distribution

Conclusion 1. Leaf water ~+1000‰, leaf glucose D distribution not affected, reflects ONLY biochemistry.

H/D exchange during cellulose synthesis: results

- Comparing D enrichment of leaf glucose, tree ring glucose and soil water shows:
 - all D isotopomers are more abundant in cellulose
 - H/D exchange is strongly variable among isotopomers.
 - Exchange reflects enzymology of cellulose synthesis.
- C(2)-H exchanges most, adopts climate signal of source water.
- C(6)-H^RH^S exchange least, retain leaf-level signals
- Biochemical conclusions:
 - 75% exchange of C(2)-H by PGI: 50% sucrose breakdown by invertase.
 - 38, 47, 48% exchange of (3,4,5)-H: 50% of all hexose cycle through trioses before cellulose synthesis

Physiological signal: CO₂ fertilisation

- The ratio of the C6-D^S/C6-D^R isotopomers depends on [CO₂] during plant growth.
- General observation in C3 species, absent in C4.
- C3-D^{S/R} of PGA passed on to glucose.
- C6-D^{S/R} do not exchange during cellulose synthesis, can therefore transfer leaf level signal into tree rings.
- This is observed in spruce tree rings.
- Possibility to measures photorespiration from tree ring D isotopomers.

Conclusions

- Identifiable exchanging / nonexchanging C-H groups
- Conclusion 1: *Ratios* of non-exchanging C-H (e.g. C(6)-D^{R/S}): Leaf level isot enzyme isotope effects > metabolic regulation. *Abundance* of non-exchanging C-H: Possible humidity signal from leaf water enrichment.
- Conclusion 2: Exchanging C-H: Precipitation signal: Temperature.
- Correlated climate and physiological information.
- ? Adaptation / fertilisation of trees due to increasing CO₂?
- ? Tree adaptations during deglaciation?

Appetizer: Deuterium distributions of DDT derivatives

- DDT and by-product have very different δD (-7 vs. 75 %), although they supposedly come from the same source.
- Deuterium NMR shows that one hydrogen of the by-product is enriched to $\delta D = 800 \%$
- This enrichment explains the positive δ of the by-product, both compounds can come from same source

Other nuclei

- ¹³C:
 - very nice resolution
 - Detecting position of label is very easy.
 - Quantification is technically challenging, but 1% precision reached (difference between C3 and C4 glucose visible, but not variation in isotopomer abundance).
- ¹⁵N is similar to ¹³C:
 - ^{15}N isotopomers of N₂O can be studied.

- Can complement IRMS for reference compounds.

¹⁷O: lost cause, the large linewidth is an intrinsic property of the ¹⁷O nucleus.

Carbon, oxygen and deuterium in plants

¹³C:

- Rubisco/diffusion fractionation affects all isotopomers, captured by δ
- Downstream metabolism: isotopomer abundances, difficult, interesting!

¹⁸O:

- Temperature signal from precipitation
- Leaf ^{18}O enrichment, affects all isotopomers, captured by δ
- CONSTANT fractionation during C=O/H₂O exchange
- tree ring $\delta^{18}O$ can be modeled

²H:

- Temperature signal from precipitation
- Leaf ^2H enrichment, affects all isotopomers, affects δ
- tree ring $\delta^2 H$ CANNOT be modeled
- Enzyme isotope effects decisive for individual isotopomers, most information is in the isotopomer distribution

Acknowledgements

<u>D and ¹³C Isotopomers:</u> Angela Augusti Tatiana Nicol

Tree ring samples / collaborators: J. Waterhouse (Cambridge) M. Leuenberger, M. Filot (Bern) S. Linder (Uppsala) T. Böttger (Jena) K. Treydte (PSI, Villigen)

S. Leavitt (Tucson)

<u>Organochlorines:</u> Walter Vetter, Stuttgart-Hohenheim

<u>N₂O</u> Thomas Röckmann, Utrecht

Funding:

Swedish Research Council (VR) CMF, Umeå University Wallenberg Foundations Kempe Foundations ESF (SIBAE program) KVA