Total of 101 peer-reviewed journal articles and 8 book chapters.

Journal articles

2024

  1. Estupinan-Suarez, L. M., Mahecha, M. D., Brenning, A., Kraemer, G., Poveda, G., Reichstein, M., & Sierra, C. A. (2024). Spatial Patterns of Vegetation Activity Related to ENSO in Northern South America. Journal of Geophysical Research: Biogeosciences, 129(1), e2022JG007344. https://doi.org/10.1029/2022JG007344
  2. Wang, G., Wang, M., Xiao, L., Sierra, C. A., Chang, J., Shi, Z., & Luo, Z. (2024). Fast Transit of Carbon Inputs in Global Soil Profiles Regardless of Entering Depth. Earth’s Future, 12(2), e2023EF003982. https://doi.org/10.1029/2023EF003982
  3. Sierra, C. A., Ahrens, B., Bolinder, M. A., Braakhekke, M. C., von Fromm, S., Kätterer, T., Luo, Z., Parvin, N., & Wang, G. (2024). Carbon sequestration in the subsoil and the time required to stabilize carbon for climate change mitigation. Global Change Biology, 30(1), e17153. https://doi.org/https://doi.org/10.1111/gcb.17153

2023

  1. Herrera-Ramı́rez David, Hartmann, H., Römermann, C., Trumbore, S., Muhr, J., Maracahipes-Santos, L., Brando, P., Silvério, D., Huang, J., Kuhlmann, I., & Sierra, C. A. (2023). Anatomical distribution of starch in the stemwood influences carbon dynamics and suggests storage-growth trade-offs in some tropical trees. Journal of Ecology, 111(11), 2532–2548. https://doi.org/10.1111/1365-2745.14209
  2. Eglinton, T. I., Graven, H. D., Raymond, P. A., Trumbore, S. E., Aluwihare, L., Bard, E., Basu, S., Friedlingstein, P., Hammer, S., Lester, J., Sanderman, J., Schuur, E. A. G., Sierra, C. A., Synal, H.-A., Turnbull, J. C., & Wacker, L. (2023). Making the case for an International Decade of Radiocarbon. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2261), 20230081. https://doi.org/10.1098/rsta.2023.0081
  3. Stoner, S., Trumbore, S. E., González-Pérez, J. A., Schrumpf, M., Sierra, C. A., Hoyt, A. M., Chadwick, O., & Doetterl, S. (2023). Relating mineral–organic matter stabilization mechanisms to carbon quality and age distributions using ramped thermal analysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2261), 20230139. https://doi.org/10.1098/rsta.2023.0139
  4. Sierra, C. A., Quetin, G. R., Metzler, H., & Müller, M. (2023). A decrease in the age of respired carbon from the terrestrial biosphere and increase in the asymmetry of its distribution. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2261), 20220200. https://doi.org/10.1098/rsta.2022.0200
  5. Metzler, H., & Sierra, C. A. (2023). Information content and maximum entropy of compartmental systems in equilibrium. ArXiv. https://doi.org/10.48550/arXiv.2308.10956
  6. Muñoz, E., & Sierra, C. A. (2023). Deterministic and stochastic components of atmospheric CO2 inside forest canopies and consequences for predicting carbon and water exchange. Agricultural and Forest Meteorology, 341, 109624. https://doi.org/https://doi.org/10.1016/j.agrformet.2023.109624
  7. Stoner, S. W., Schrumpf, M., Hoyt, A., Sierra, C. A., Doetterl, S., Galy, V., & Trumbore, S. (2023). How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter. Biogeosciences, 20(15), 3151–3163. https://doi.org/10.5194/bg-20-3151-2023
  8. Sierra, C. A. (2023). Recurrence in Lissajous Curves and the Visual Representation of Tuning Systems. Foundations of Science. https://doi.org/10.1007/s10699-023-09930-z
  9. Spohn, M., Braun, S., & Sierra, C. A. (2023). Continuous decrease in soil organic matter despite increased plant productivity in an 80-years-old phosphorus-addition experiment. Communications Earth & Environment, 4(1), 251. https://doi.org/10.1038/s43247-023-00915-1
  10. Sarquis, A., & Sierra, C. A. (2023). Information content in time series of litter decomposition studies and the transit time of litter in arid lands. Biogeosciences, 20(9), 1759–1771. https://doi.org/10.5194/bg-20-1759-2023
  11. Jia, J., Liu, Z., Haghipour, N., Wacker, L., Zhang, H., Sierra, C. A., Ma, T., Wang, Y., Chen, L., Luo, A., Wang, Z., He, J.-S., Zhao, M., Eglinton, T. I., & Feng, X. (2023). Molecular 14C evidence for contrasting turnover and temperature sensitivity of soil organic matter components. Ecology Letters, 26(5), 778–788. https://doi.org/10.1111/ele.14204
  12. Giraldo, J. A., del Valle, J. I., González-Caro, S., David, D. A., Taylor, T., Tobón, C., & Sierra, C. A. (2023). Tree growth periodicity in the ever-wet tropical forest of the Americas. Journal of Ecology, 111(4), 889–902. https://doi.org/10.1111/1365-2745.14069
  13. Scheibe, A., Sierra, C. A., & Spohn, M. (2023). Recently fixed carbon fuels microbial activity several meters below the soil surface. Biogeosciences, 20(4), 827–838. https://doi.org/10.5194/bg-20-827-2023
  14. Tangarife-Escobar, A., Guggenberger, G., Feng, X., Dai, G., Urbina-Malo, C., Azizi-Rad, M., & Sierra, C. (2023). Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau. EGUsphere, 2023, 1–38. https://doi.org/10.5194/egusphere-2023-210
  15. González Sosa, M., Sierra, C. A., Quincke, J. A., Baethgen, W. E., Trumbore, S., & Pravia, M. V. (2023). High capacity of integrated crop-pasture systems to preserve old stable carbon evaluated in a 60-year-old experiment. EGUsphere, preprint, 1–28. https://doi.org/10.5194/egusphere-2023-2650
  16. Muñoz Estefanı́a, Chanca, I., & Sierra, C. A. (2023). Increased atmospheric CO2 and the transit time of carbon in terrestrial ecosystems. Global Change Biology, 29(23), 6441–6452. https://doi.org/https://doi.org/10.1111/gcb.16961

2022

  1. Azizi-Rad, M., Guggenberger, G., Ma, Y., & Sierra, C. A. (2022). Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing. Soil Biology and Biochemistry, 165, 108488. https://doi.org/10.1016/j.soilbio.2021.108488
  2. Wells, J. M., Crow, S. E., Sierra, C. A., Deenik, J. L., Carlson, K. M., Meki, M. N., & Kiniry, J. (2022). Edaphic controls of soil organic carbon in tropical agricultural landscapes. Scientific Reports, 12(1), 21574. https://doi.org/10.1038/s41598-022-24655-y
  3. Crow, S. E., & Sierra, C. A. (2022). The climate benefit of sequestration in soils for warming mitigation. Biogeochemistry, 161, 71–84. https://doi.org/10.1007/s10533-022-00981-1
  4. Sierra, C. A., Ceballos-Núñez, V., Hartmann, H., Herrera-Ramı́rez D., & Metzler, H. (2022). Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon. Biogeosciences, 19(16), 3727–3738. https://doi.org/10.5194/bg-19-3727-2022
  5. Luo, Y., Huang, Y., Sierra, C. A., Xia, J., Ahlström, A., Chen, Y., Hararuk, O., Hou, E., Jiang, L., Liao, C., Lu, X., Shi, Z., Smith, B., Tao, F., & Wang, Y.-P. (2022). Matrix Approach to Land Carbon Cycle Modeling. Journal of Advances in Modeling Earth Systems, 14(7), e2022MS003008. https://doi.org/https://doi.org/10.1029/2022MS003008
  6. Xiao, L., Wang, G., Wang, M., Zhang, S., Sierra, C. A., Guo, X., Chang, J., Shi, Z., & Luo, Z. (2022). Younger carbon dominates global soil carbon efflux. Global Change Biology, 28(18), 5587–5599. https://doi.org/https://doi.org/10.1111/gcb.16311
  7. Salazar, A., Sanchez, A., Dukes, J. S., Salazar, J. F., Clerici, N., Lasso, E., Sánchez-Pacheco, S. J., Ángela M. Rendón, Villegas, J. C., Sierra, C. A., Poveda, G., Quesada, B., Uribe, M. R., Rodrı́guez-Buriticá Susana, Ungar, P., Pulido-Santacruz, P., Ruiz-Morato, N., & Arias, P. A. (2022). Peace and the environment at the crossroads: Elections in a conflict-troubled biodiversity hotspot. Environmental Science & Policy, 135, 77–85. https://doi.org/10.1016/j.envsci.2022.04.013
  8. Vásquez, M., Lara, W., del Valle, J. I., & Sierra, C. A. (2022). Reconstructing past fossil-fuel CO_2 concentrations using tree rings and radiocarbon in the urban area of Medellı́n, Colombia. Environmental Research Letters, 17(5), 055008. https://doi.org/10.1088/1748-9326/ac63d4
  9. Chanca, I., Trumbore, S., Macario, K., & Sierra, C. A. (2022). Probability distributions of radiocarbon in open linear compartmental systems at steady-state. Journal of Geophysical Research: Biogeosciences, 127(3), e2021JG006673. https://doi.org/10.1029/2021JG006673
  10. Sarquis, A., Siebenhart, I. A., Austin, A. T., & Sierra, C. A. (2022). Aridec: an open database of litter mass loss from aridlands worldwide with recommendations on suitable model applications. Earth System Science Data, 14(7), 3471–3488. https://doi.org/10.5194/essd-14-3471-2022
  11. Giraldo, J. A., del Valle, J. I., González-Caro, S., & Sierra, C. A. (2022). Intra-annual isotope variations in tree rings reveal growth rhythms within the least rainy season of an ever-wet tropical forest. Trees, 36(3), 1039–1052. https://doi.org/10.1007/s00468-022-02271-7
  12. Heckman, K., Hicks Pries, C. E., Lawrence, C. R., Rasmussen, C., Crow, S. E., Hoyt, A. M., von Fromm, S. F., Shi, Z., Stoner, S., McGrath, C., Beem-Miller, J., Berhe, A. A., Blankinship, J. C., Keiluweit, M., Marı́n-Spiotta Erika, Monroe, J. G., Plante, A. F., Schimel, J., Sierra, C. A., … Wagai, R. (2022). Beyond bulk: Density fractions explain heterogeneity in global soil carbon abundance and persistence. Global Change Biology, 28(3), 1178–1196. https://doi.org/10.1111/gcb.16023

2021

  1. Uribe, M. R., Sierra, C. A., & Dukes, J. S. (2021). Seasonality of Tropical Photosynthesis: A Pantropical Map of Correlations With Precipitation and Radiation and Comparison to Model Outputs. Journal of Geophysical Research: Biogeosciences, 126(11), e2020JG006123. https://doi.org/10.1029/2020JG006123
  2. Azizi-Rad, M., Chanca, I., Herrera-Ramírez, D., Metzler, H., & Sierra, C. A. (2021). Stochastic and deterministic interpretation of pool models. Global Change Biology, 27(11), 2271–2272. https://doi.org/https://doi.org/10.1111/gcb.15581
  3. Sierra, C. A., Metzler, H., Müller, M., & Kaiser, E. (2021). Closed-loop and congestion control of the global carbon-climate system. Climatic Change, 165(1), 15. https://doi.org/10.1007/s10584-021-03040-0
  4. Herrera-Ramírez, D., Sierra, C. A., Römermann, C., Muhr, J., Trumbore, S., Silvério, D., Brando, P. M., & Hartmann, H. (2021). Starch and lipid storage strategies in tropical trees relate to growth and mortality. New Phytologist, 230(1), 139–154. https://doi.org/10.1111/nph.17239
  5. Sierra, C. A., Crow, S. E., Heimann, M., Metzler, H., & Schulze, E.-D. (2021). The climate benefit of carbon sequestration. Biogeosciences, 18(3), 1029–1048. https://doi.org/10.5194/bg-18-1029-2021
  6. Stoner, S. W., Hoyt, A. M., Trumbore, S., Sierra, C. A., Schrumpf, M., Doetterl, S., Baisden, W. T., & Schipper, L. A. (2021). Soil organic matter turnover rates increase to match increased inputs in grazed grasslands. Biogeochemistry, 156(1), 145–160. https://doi.org/10.1007/s10533-021-00838-z
  7. Sierra, C. A., Estupinan-Suarez, L. M., & Chanca, I. (2021). The fate and transit time of carbon in a tropical forest. Journal of Ecology, 109(8), 2845–2855. https://doi.org/10.1111/1365-2745.13723
  8. Estupinan-Suarez, L. M., Gans, F., Brenning, A., Gutierrez-Velez, V. H., Londono, M. C., Pabon-Moreno, D. E., Poveda, G., Reichstein, M., Reu, B., Sierra, C. A., Weber, U., & Mahecha, M. D. (2021). A Regional Earth System Data Lab for Understanding Ecosystem Dynamics: An Example from Tropical South America. Frontiers in Earth Science, 9, 574. https://doi.org/10.3389/feart.2021.613395

2020

  1. Kattge, J., Bönisch, G., Dı́az Sandra, Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., Alcázar C, C., Aleixo, I., Ali, H., … Wirth, C. (2020). TRY plant trait database –enhanced coverage and open access. Global Change Biology, 26(1), 119–188. https://doi.org/doi:10.1111/gcb.14904
  2. Metzler, H., Zhu, Q., Riley, W., Hoyt, A., Müller, M., & Sierra, C. A. (2020). Mathematical Reconstruction of Land Carbon Models From Their Numerical Output: Computing Soil Radiocarbon From C Dynamics. Journal of Advances in Modeling Earth Systems, 12(1), e2019MS001776. https://doi.org/10.1029/2019MS001776
  3. Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., … Wagai, R. (2020). An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth System Science Data, 12(1), 61–76. https://doi.org/10.5194/essd-12-61-2020
  4. Crow, S. E., Wells, J. M., Sierra, C. A., Youkhana, A. H., Ogoshi, R. M., Richardson, D., Tallamy Glazer, C., Meki, M. N., & Kiniry, J. R. (2020). Carbon flow through energycane agroecosystems established post-intensive agriculture. GCB Bioenergy, 12(10), 806–817. https://doi.org/10.1111/gcbb.12713
  5. Jiménez, E. M., Peñuela-Mora Marı́a Cristina, Moreno, F., & Sierra, C. A. (2020). Spatial and temporal variation of forest net primary productivity components on contrasting soils in northwestern Amazon. Ecosphere, 11(8), e03233. https://doi.org/10.1002/ecs2.3233
  6. Ceballos-Núñez, V., Müller, M., & Sierra, C. A. (2020). Towards better representations of carbon allocation in vegetation: a conceptual framework and mathematical tool. Theoretical Ecology, 13(3), 317–332. https://doi.org/10.1007/s12080-020-00455-w
  7. Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S. E., Hicks Pries, C. E., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, S., Treat, C. C., & Sierra, C. A. (2020). Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures. Earth System Science Data, 12(3), 1511–1524. https://doi.org/10.5194/essd-12-1511-2020
  8. Herrera-Ramírez, D., Muhr, J., Hartmann, H., Römermann, C., Trumbore, S., & Sierra, C. A. (2020). Probability distributions of nonstructural carbon ages and transit times provide insights into carbon allocation dynamics of mature trees. New Phytologist, 226(5), 1299–1311. https://doi.org/10.1111/nph.16461
  9. Linscheid, N., Estupinan-Suarez, L. M., Brenning, A., Carvalhais, N., Cremer, F., Gans, F., Rammig, A., Reichstein, M., Sierra, C. A., & Mahecha, M. D. (2020). Towards a global understanding of vegetation–climate dynamics at multiple timescales. Biogeosciences, 17(4), 945–962. https://doi.org/10.5194/bg-17-945-2020
  10. Schulze, E. D., Sierra, C. A., Egenolf, V., Woerdehoff, R., Irslinger, R., Baldamus, C., Stupak, I., & Spellmann, H. (2020). The climate change mitigation effect of bioenergy from sustainably managed forests in Central Europe. GCB Bioenergy, 12(3), 186–197. https://doi.org/10.1111/gcbb.12672

2018

  1. McDowell, N., Allen, C. D., Anderson-Teixeira, K., Brando, P., Brienen, R., Chambers, J., Christoffersen, B., Davies, S., Doughty, C., Duque, A., Espirito-Santo, F., Fisher, R., Fontes, C. G., Galbraith, D., Goodsman, D., Grossiord, C., Hartmann, H., Holm, J., Johnson, D. J., … Xu, X. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 219(3), 851–869. https://doi.org/10.1111/nph.15027
  2. Sierra, C. A., Hoyt, A. M., He, Y., & Trumbore, S. E. (2018). Soil Organic Matter Persistence as a Stochastic Process: Age and Transit Time Distributions of Carbon in Soils. Global Biogeochemical Cycles, 32(10), 1574–1588. https://doi.org/10.1029/2018GB005950
  3. Salazar, A., Sanchez, A., Villegas, J. C., Salazar, J. F., Ruiz Carrascal, D., Sitch, S., Restrepo Juan Darı́o, Poveda, G., Feeley, K. J., Mercado, L. M., Arias, P. A., Sierra, C. A., Uribe, M. del R., Rendón, A. M., Pérez, J. C., Murray Tortarolo, G., Mercado-Bettin, D., Posada, J. A., Zhuang, Q., & Dukes, J. S. (2018). The ecology of peace: preparing Colombia for new political and planetary climates. Frontiers in Ecology and the Environment, 16(9), 525–531. https://doi.org/10.1002/fee.1950
  4. Völkel, H., Bolivar, J. M., & Sierra, C. A. (2018). Stabilization of carbon in mineral soils from mangroves of the Sinú river delta, Colombia. Wetlands Ecology and Management, 26(5), 931–942. https://doi.org/10.1007/s11273-018-9621-z
  5. Sierra, C. A., Ceballos-Núñez, V., Metzler, H., & Müller, M. (2018). Representing and Understanding the Carbon Cycle Using the Theory of Compartmental Dynamical Systems. Journal of Advances in Modeling Earth Systems, 10(8), 1729–1734. https://doi.org/10.1029/2018MS001360
  6. Sierra, C. A. (2018). Forecasting Atmospheric Radiocarbon Decline to Pre-Bomb Values. Radiocarbon, 60(4), 1055–1066. https://doi.org/10.1017/RDC.2018.33
  7. Blankinship, J. C., Berhe, A. A., Crow, S. E., Druhan, J. L., Heckman, K. A., Keiluweit, M., Lawrence, C. R., Marı́n-Spiotta Erika, Plante, A. F., Rasmussen, C., Schädel, C., Schimel, J. P., Sierra, C. A., Thompson, A., Wagai, R., & Wieder, W. R. (2018). Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry, 140(1), 1–13. https://doi.org/10.1007/s10533-018-0478-2
  8. Boone, L., linden, V. V., Roldán-Ruiz, I., Sierra, C. A., Vandecasteele, B., Sleutel, S., Meester, S. D., Muylle, H., & Dewulf, J. (2018). Introduction of a natural resource balance indicator to assess soil organic carbon management: Agricultural Biomass Productivity Benefit. Journal of Environmental Management, 224, 202–214. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.07.013
  9. Crow, S. E., & Sierra, C. A. (2018). Dynamic, Intermediate Soil Carbon Pools May Drive Future Responsiveness to Environmental Change. Journal of Environmental Quality, 47(4), 607–616. https://doi.org/10.2134/jeq2017.07.0280
  10. Spohn, M., & Sierra, C. A. (2018). How long do elements cycle in terrestrial ecosystems? Biogeochemistry, 139(1), 69–83. https://doi.org/10.1007/s10533-018-0452-z
  11. Crow, S. E., Deem, L. M., Sierra, C. A., & Wells, J. M. (2018). Belowground Carbon Dynamics in Tropical Perennial C4 Grass Agroecosystems. Frontiers in Environmental Science, 6, 18. https://doi.org/10.3389/fenvs.2018.00018
  12. Ceballos-Núñez, V., Richardson, A. D., & Sierra, C. A. (2018). Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models. Biogeosciences, 15(5), 1607–1625. https://doi.org/10.5194/bg-15-1607-2018
  13. Bolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145–155. https://doi.org/https://doi.org/10.1016/j.rsma.2017.12.011
  14. Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Hicks Pries, C. E., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P., Sierra, C. A., Thompson, A., & Wagai, R. (2018). Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry, 137(3), 297–306. https://doi.org/10.1007/s10533-018-0424-3
  15. Metzler, H., Müller, M., & Sierra, C. A. (2018). Transit-time and age distributions for nonlinear time-dependent compartmental systems. Proceedings of the National Academy of Sciences, 115(6), 1150–1155. https://doi.org/10.1073/pnas.1705296115
  16. Metzler, H., & Sierra, C. A. (2018). Linear Autonomous Compartmental Models as Continuous-Time Markov Chains: Transit-Time and Age Distributions. Mathematical Geosciences, 50(1), 1–34. https://doi.org/10.1007/s11004-017-9690-1

2017

  1. Müller, M., & Sierra, C. A. (2017). Application of input to state stability to reservoir models. Theoretical Ecology, 10, 451–475. https://doi.org/10.1007/s12080-017-0342-3
  2. Sierra, C. A., Müller, M., Metzler, H., Manzoni, S., & Trumbore, S. E. (2017). The muddle of ages, turnover, transit, and residence times in the carbon cycle. Global Change Biology, 23(5), 1763–1773. https://doi.org/10.1111/gcb.13556
  3. Sierra, C. A., Malghani, S., & Loescher, H. W. (2017). Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences, 14(3), 703–710. https://doi.org/10.5194/bg-14-703-2017
  4. Sierra, C. A., Mahecha, M., Poveda, G., Álvarez-Dávila, E., Gutierrez-Velez Vı́ctor H., Reu, B., Feilhauer, H., Anáya, J., Armenteras, D., Benavides, A. M., Buendia, C., Álvaro Duque, Estupiñan-Suarez, L. M., González, C., Gonzalez-Caro, S., Jimenez, R., Kraemer, G., Londoño, M. C., Orrego, S. A., … Skowronek, S. (2017). Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science & Policy, 76, 40–49. https://doi.org/https://doi.org/10.1016/j.envsci.2017.06.011

2016

  1. Wiesmeier, M., Poeplau, C., Sierra, C. A., Maier, H., Frühauf, C., Hübner, R., Kühnel, A., Spörlein, P., Geuß, U., Hangen, E., Schilling, B., von Lützow, M., & Kögel-Knabner, I. (2016). Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends. Scientific Reports, 6, 32525 EP. https://doi.org/10.1038/srep32525
  2. Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., … Zhou, T. (2016). Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 30(1), 40–56. https://doi.org/10.1002/2015GB005239

2015

  1. Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vazquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6. https://doi.org/10.1038/ncomms7707
  2. Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., & Janssens, I. (2015). Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. Journal of Advances in Modeling Earth Systems, 7(1), 335–356. https://doi.org/10.1002/2014MS000358
  3. Trumbore, S., Czimczik, C. I., Sierra, C. A., Muhr, J., & Xu, X. (2015). Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks. Tree Physiology, 35(11), 1206–1222. https://doi.org/10.1093/treephys/tpv097
  4. Sierra, C. A., Malghani, S., & Müller, M. (2015). Model structure and parameter identification of soil organic matter models. Soil Biology and Biochemistry, 90, 197–203. https://doi.org/10.1016/j.soilbio.2015.08.012
  5. Crow, S. E., Reeves, M., Schubert, O. S., & Sierra, C. A. (2015). Optimization of method to quantify soil organic matter dynamics and carbon sequestration potential in volcanic ash soils. Biogeochemistry, 123(1-2), 27–47. https://doi.org/10.1007/s10533-014-0051-6
  6. Lara, W., Bravo, F., & Sierra, C. A. (2015). measuRing: an R package to measure tree-ring widths from scanned images. Dendrochronologia, 34, 43–50. https://doi.org/10.1016/j.dendro.2015.04.002
  7. Sierra, C. A., & Müller, M. (2015). A general mathematical framework for representing soil organic matter dynamics. Ecological Monographs, 85, 505–524. https://doi.org/10.1890/15-0361.1

2014

  1. Sierra, C. A., Müller, M., & Trumbore, S. E. (2014). Modeling radiocarbon dynamics in soils: SoilR version 1.1. Geoscientific Model Development, 7(5), 1919–1931. https://doi.org/10.5194/gmd-7-1919-2014
  2. Jiménez, E. M., Peñuela-Mora Marı́a Cristina, Sierra, C. A., Lloyd, J., Phillips, O. L., Moreno, F. H., Navarrete, D., Prieto, A., Rudas Agustı́n, Álvarez, E., Quesada, C. A., Grande-Ortı́z Maria Angeles, Garcı́a-Abril Antonio, & Patiño, S. (2014). Edaphic controls on ecosystem-level carbon allocation in two contrasting Amazon forests. Journal of Geophysical Research: Biogeosciences, 119(9), 1820–1830. https://doi.org/10.1002/2014JG002653
  3. Guarín, J. R., del Valle, J. I., & Sierra, C. A. (2014). Establishment phase, spatial pattern, age, and demography of Oenocarpus bataua var. bataua can be a legacy of past loggings in the Colombian Andes. Forest Ecology and Management, 328(0), 282–291. https://doi.org/10.1016/j.foreco.2014.05.043
  4. del Valle, J., Guarı́n Juan, & Sierra, C. (2014). Unambiguous and Low-Cost Determination of Growth Rates and Ages of Tropical Trees and Palms. Radiocarbon, 56(1), 39–52. https://doi.org/10.2458/56.16486

2013

  1. Wäldchen, J., Schulze, E.-D., Schöning, I., Schrumpf, M., & Sierra, C. (2013). The influence of changes in forest management over the past 200 years on present soil organic carbon stocks. Forest Ecology and Management, 289(0), 243–254. https://doi.org/10.1016/j.foreco.2012.10.014
  2. Schöning, I., Grüneberg, E., Sierra, C. A., Hessenmöller, D., Schrumpf, M., Weisser, W. W., & Schulze, E.-D. (2013). Causes of variation in mineral soil C content and turnover in differently managed beech dominated forests. Plant and Soil, 370(1-2), 625–639. https://doi.org/10.1007/s11104-013-1654-8
  3. Sierra, C. A., Jiménez, E. M., Reu, B., Peñuela, M. C., Thuille, A., & Quesada, C. A. (2013). Low vertical transfer rates of carbon inferred from radiocarbon analysis in an Amazon Podzol. Biogeosciences, 10(6), 3455–3464. https://doi.org/10.5194/bg-10-3455-2013

2012

  1. Sierra, C. A., Müller, M., & Trumbore, S. E. (2012). Models of soil organic matter decomposition: the SoilR package, version 1.0. Geosci. Model Dev., 5(4), 1045–1060. https://doi.org/10.5194/gmd-5-1045-2012
  2. Sierra, C., del Valle, J., & Restrepo, H. (2012). Total carbon accumulation in a tropical forest landscape. Carbon Balance and Management, 7(1), 12. https://doi.org/10.1186/1750-0680-7-12
  3. Krankina, O. N., Harmon, M. E., Schnekenburger, F., & Sierra, C. A. (2012). Carbon balance on federal forest lands of Western Oregon and Washington: The impact of the Northwest Forest Plan. Forest Ecology and Management, 286(0), 171–182. https://doi.org/10.1016/j.foreco.2012.08.028
  4. Sierra, C. A., Trumbore, S. E., Davidson, E. A., Frey, S. D., Savage, K. E., & Hopkins, F. M. (2012). Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil. Biogeosciences, 9(8), 3013–3028. https://doi.org/10.5194/bg-9-3013-2012
  5. Zapata-Cuartas, M., Sierra, C. A., & Alleman, L. (2012). Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. Forest Ecology and Management, 277(0), 173–179. https://doi.org/10.1016/j.foreco.2012.04.030
  6. Sierra, C. (2012). Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theoretical considerations. Biogeochemistry, 108(1), 1–15. https://doi.org/10.1007/s10533-011-9596-9

2011

  1. Cleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S., Bustamante, M. M. C., Chuyong, G., Dobrowski, S. Z., Grierson, P., Harms, K. E., Houlton, B. Z., Marklein, A., Parton, W., Porder, S., Reed, S. C., Sierra, C. A., Silver, W. L., Tanner, E. V. J., & Wieder, W. R. (2011). Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters, 14(9), 939–947. https://doi.org/10.1111/j.1461-0248.2011.01658.x
  2. Sierra, C. A., Harmon, M. E., & Perakis, S. S. (2011). Decomposition of heterogeneous organic matter and its long-term stabilization in soils. Ecological Monographs, 81(4), 619–634. https://doi.org/10.1890/11-0811.1
  3. Sierra, C. A., Harmon, M. E., Thomann, E., Perakis, S. S., & Loescher, H. W. (2011). Amplification and dampening of soil respiration by changes in temperature variability. Biogeosciences, 8(4), 951–961. https://doi.org/10.5194/bg-8-951-2011

2010

  1. Sierra, C. A., & Yepes, A. P. (2010). Development of Global Change Research in Developing Countries: Ecosystems and Global Change in the Context of the Neotropics; Medellı́n, Colombia, 19–20 May 2010. Eos, Transactions American Geophysical Union, 91(41), 373–374. https://doi.org/10.1029/2010EO410008

2009

  1. Sierra, C. A., Loescher, H. W., Harmon, M. E., Richardson, A. D., Hollinger, D. Y., & Perakis, S. S. (2009). Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate. Ecology, 90(10), 2711–2723. https://doi.org/10.1890/08-0073.1

2007

  1. Sierra, C. A., del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Herrera, M. A., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., & Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243(2-3), 299–309. https://doi.org/10.1016/j.foreco.2007.03.026
  2. Sierra, C. A., Harmon, M. E., Moreno, F. H., Orrego, S. A., & del Valle, J. I. (2007). Spatial and temporal variability of net ecosystem production in a tropical forest: testing the hypothesis of a significant carbon sink. Global Change Biology, 13(4), 838–853. https://doi.org/10.1111/j.1365-2486.2007.01336.x
  3. Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., … Janssens, I. A. (2007). CO_2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12), 2509–2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x

2006

  1. Gutiérrez Vı́ctor Hugo, Zapata, M., Sierra, C., Laguado, W., & Santacruz Alı́. (2006). Maximizing the profitability of forestry projects under the Clean Development Mechanism using a forest management optimization model. Forest Ecology and Management, 226(1–3), 341–350. https://doi.org/10.1016/j.foreco.2006.02.002

2003

  1. Sierra, C. A., del Valle, J. I., & Orrego, S. A. (2003). Accounting for fine root mass sample losses in the washing process: a case study from a tropical montane forest of Colombia. Journal of Tropical Ecology, 19, 599–601. https://doi.org/10.1017/S0266467403003663

Book Chapters

  1. Sierra, C. A. (2023). Time Characteristics of Compartmental Systems. In Y. Luo & B. Smith (Eds.), Land Carbon Cycle Modeling: Matrix Approach, Data Assimilation, & Ecological Forecasting (pp. 123–127). CRC Press. https://doi.org/10.1201/9780429155659-19
  2. Sierra, C. A. (2023). Compartmental Dynamical Systems and Carbon Cycle Models. In Y. Luo & B. Smith (Eds.), Land Carbon Cycle Modeling: Matrix Approach, Data Assimilation, & Ecological Forecasting (pp. 57–64). CRC Press. https://doi.org/10.1201/9780429155659-9
  3. Riley, W. J., Sierra, C. A., Tang, J., Bouskill, N. J., Zhu, Q., & Abramoff, R. Z. (2022). NEXT-GENERATION SOIL BIOGEOCHEMISTRY MODEL REPRESENTATIONS. In Multi‐Scale Biogeochemical Processes in Soil Ecosystems (pp. 233–257). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119480419.ch11
  4. Sierra, C. A., & Crow, S. E. (2022). Modeling Soil Organic Carbon Dynamics, Carbon Sequestration, and the Climate Benefit of Sequestration. In C. Rumpell (Ed.), Understanding and fostering soil carbon sequestration. Burleigh Dodds Science Publishing. https://doi.org/10.1002/essoar.10509003.1
  5. Giraldo, J. A., del Valle, J. I., Sierra, C. A., & Melo, O. (2020). Dendrochronological Potential of Trees from America’s Rainiest Region. In Pompa-Garcia Marı́n & J. J. Camarero (Eds.), Latin American Dendroecology: Combining Tree-Ring Sciences and Ecology in a Megadiverse Territory (pp. 79–119). Springer International Publishing. https://doi.org/10.1007/978-3-030-36930-9_5
  6. Sierra, C. A. (2019). Approaches to Model Processes at the Ecosystem Level. In E.-D. Schulze, E. Beck, N. Buchmann, S. Clemens, K. Müller-Hohenstein, & M. Scherer-Lorenzen (Eds.), Plant Ecology (pp. 513–527). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_15
  7. Wells, J. M., Crow, S. E., Meki, M. N., Sierra, C. A., Carlson, K. M., Youkhana, A., Richardson, D., & Deem, L. (2017). Maximizing Soil Carbon Sequestration: Assessing Procedural Barriers to Carbon Management in Cultivated Tropical Perennial Grass Systems. In Y. Yun (Ed.), Recent Advances in Carbon Capture and Storage. InTech. https://doi.org/10.5772/66741
  8. Trumbore, S. E., Sierra, C. A., & Hicks Pries, C. E. (2016). Radiocarbon Nomenclature, Theory, Models, and Interpretation: Measuring Age, Determining Cycling Rates, and Tracing Source Pools. In A. G. E. Schuur, E. Druffel, & E. S. Trumbore (Eds.), Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques (pp. 45–82). Springer International Publishing. https://doi.org/10.1007/978-3-319-25643-6_3

PhD and Master theses

  1. Azizi-Rad, M. (2022). Sensitivity of soil organic carbon to the change in climate on the Tibetan Plateau [PhD thesis, Hannover : Institutionelles Repositorium der Leibniz Universität Hannover;]. https://doi.org/10.15488/12863
  2. Chanca, I. (2022). Theoretical and experimental approaches using 14C for estimating system diagnostic times in the central Amazon rainforest [PhD thesis, Instituto de Fisica, Universidade Federal Fluminense]. https://portal.if.uff.br/posgrad/wp-content/uploads/sites/3/2022/07/Ingrid-Silva-Chanca-D.pdf
  3. Herrera-Ramı́rez David. (2021). Dynamics of non-structural carbohydrates in tropical trees and wood functional traits [PhD thesis, Dissertation, Friedrich-Schiller-Universität Jena, 2021]. https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20220228-104411-002
  4. Metzler, H. (2020). Compartmental systems as Markov chains : age, transit time, and entropy (T. Oertel-Jäger, I. Pavlyukevich, & C. Sierra, Eds.) [PhD thesis, Friedrich-Schiller-Universiät Jena]. https://suche.thulb.uni-jena.de/Record/1726091651
  5. Ceballos-Núñez, V. (2018). Nonlinearities in Carbon Allocation and Vegetation Functioning Dissertation (pp. 124 p.) [PhD thesis, Friedrich-Schiller-Universiät Jena]. http://www.clib-jena.mpg.de/theses/bgc/BGC18006.pdf
  6. Völkel, H. (2016). Mineral-associated carbon in mangrove ecosystems in the Sinú river delta, Colombia (pp. VII, 74 S.) [Master's thesis, Friedrich-Schiller-Universiät Jena]. http://www.clib-jena.mpg.de/theses/bgc/BGC17001.pdf
  7. Jimenez-Rojas, E. M. (2013). Carbon allocation in north-western Amazon forests (Colombia) [PhD thesis, Escuela Técnica Superior de Ingenierı́a de Montes, Universidad Politécnica de Madrid]. http://oa.upm.es/22536/