Max Planck Gesellschaft

Molecular Biogeochemistry



Team | Projects | Facilities | Intranet

Mission

The research group explores key processes in the global biogeochemical cycles at the molecular level. Biomarkers and their isotopic content hold information on the regulation of the individual processes. The group is developing new tools and is applying existing techniques to investigate single key processes.

Interested in working with us?

We are always looking for interested students who want to pursue a Masters Thesis (preferably in combination with a project module) with us. More information about open positions:
Mikrobielle Aktivität entlang des Bodenprofils.

News

  • 02.20 - Carsten Simon successfully defended his thesis on the "Identification of ecosystem-specific markers in terrestrial dissolved organic matter (DOM) by Orbitrap mass spectrometry". Congratulations!
  • 02.20 - New Paper Alert - Schroeter et al. paper "Biomolecular Evidence of Early Human Occupation of a High-Altitude Site in Western Central Asia During the Holocene" is online in Frontiers in Earth Science. Find the paper here
  • 01.20 - Alice Orme joined our group as a new PhD student, working on her PhD topic entitled "Decoding the molecular signals of dissolved organic matter". She is also full member of the International Max Planck Research School for biogeochemical cycles (IMPRS-gBGC). Welcome, Alice!
  • 12.19 - Carsten, Natalie, Simon and Gerd presented their recent findings at the AGU Fall Meeting in San Francisco, California, USA.
  • 10.19 - Georg and Gerd conducted a field study in Namibia and sampled fairy cycles in the local arid grasslands for Georg's MSc thesis.











Archive

Latest Publications

1Raghab, R., Thouzeau, G., Walcker, R., Vantrepotte, V., Gleixner, G., Morvan, S., Devesa, J., Michaud, E. (in press). Mangrove-derived organic and inorganic carbon exchanges between the Sinnamary estuarine system (French Guiana, South America) and the Atlantic Ocean. Journal of Geophysical Research: Biogeosciences. doi:10.1029/2020JG005739.
2Hawkes, J. A., D’Andrilli, J., Agar, J. N., Barrow, M. P., Berg, S. M., Catalán, N., Chen, H., Chu, R. K., Cole, R. B., Dittmar, T., Gavard, R., Gleixner, G., Hatcher, P. G., He, C., Hess, N. J., Hutchins, R. H. S., Ijaz, A., Jones, H. E., Kew, W., Khaksari, M., Lozano, D. C. P., Lv, J., Mazzoleni, L., Noriega-Ortega, B. E., Osterholz, H., Radoman, N., Remucal, C. K., Schmitt, N. D., Schum, S., Shi, Q., Simon, C., Singer, G., Sleighter, R. L., Stubbins, A., Thomas, M. J., Tolic, N., Zhang, S., Zito, P., Podgorski, D. C. (in press). An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer? Limnology and Oceanography: Methods. doi:10.1002/lom3.10364.
3Schädel, C., Beem-Miller, J., Rad, M. A., Crow, S. E., Pries, C. H., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, S., Treat, C. C., Sierra, C. (2020). Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures. Earth System Science Data, 12(3), 1511-1524. doi:10.5194/essd-12-1511-2020.
4Lama, S., Kuhn, T., Lehmann, M. F., Müller, C., Gonzalez, O., Eisenhauer, N., Lange, M., Scheu, S., Oelmann, Y., Wilcke, W. (2020). The biodiversity - N cycle relationship: a 15N tracer experiment with soil from plant mixtures of varying diversity to model N pool sizes and transformation rates. Biology and Fertility of Soils, 56, 1047-1061. doi:10.1007/s00374-020-01480-x.
5Gayantha, K., Routh, J., Anupama, K., Lazar, J., Prasad, S., Chandrajith, R., Roberts, P., Gleixner, G. (2020). Reconstruction of the Late Holocene climate and environmental history from North Bolgoda Lake, Sri Lanka, using lipid biomarkers and pollen records. Journal of Quaternary Science, 35(4), 514-525. doi:10.1002/jqs.3196.
6Huang, J., Rücker, A., Schmidt, A., Gleixner, G., Gershenzon, J., Trumbore, S. E., Hartmann, H. (2020). Production of constitutive and induced secondary metabolites is coordinated with growth and storage in Norway spruce saplings. Tree Physiology, 40(7): tpaa040, pp. 928-942. doi:10.1093/treephys/tpaa040.
7Schroeter, N., Lauterbach, S., Stebich, M., Kalanke, J., Mingram, J., Yildiz, C., Schouten, S., Gleixner, G. (2020). Biomolecular evidence of early human occupation of a high-altitude site in Western Central Asia during the Holocene. Frontiers in Earth Science, 8: 20. doi:10.3389/feart.2020.00020.
8Chowdhury, S., Lange, M., Malik, A. A., Goodall, T., Huang, J., Griffiths, R. I., Gleixner, G. (2020). The effect of plant-derived carbon on rhizospheric microbial communities decomposing different litter types and nutrient return. bioRxiv. doi:10.1101/2020.05.08.085407.
9Schroeter, N., Toney, J. L., Lauterbach, S., Kalanke, J., Schwarz, A., Schouten, S., Gleixner, G. (2020). How to deal with multi-proxy data for paleoenvironmental reconstructions: Applications to a Holocene lake sediment record from the Tian Shan, Central Asia. Frontiers in Earth Science, 8: 353. doi:10.3389/feart.2020.00353.
10Ingrisch, J., Karlowsky, S., Hasibeder, R., Gleixner, G., Bahn, M. (2020). Drought and recovery effects on belowground respiration dynamics and the partitioning of recent carbon in managed and abandoned grassland. Global Change Biology, 26(8), 4366-4378. doi:10.1111/gcb.15131.
11Buzhdygan, O. Y., Meyer, S. T., Weisser, W. W., Eisenhauer, N., Ebeling, A., Borrett, S. R., Buchmann, N., Cortois, R., Deyn, G. B. D., de Kroon, H., Gleixner, G., Hertzog, L. R., Hines, J., Lange, M., Mommer, L., Ravenek, J., Scherber, C., Scherer-Lorenzen, M., Scheu, S., Schmid, B., Steinauer, K., Strecker, T., Tietjen, B., Vogel, A., Weigelt, A., Petermann, J. S. (2020). Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nature Ecology & Evolution, 4, 393-405. doi:10.1038/s41559-020-1123-8.
12Joseph, J., Gao, D., Backes, B., Bloch, C., Brunner, I., Gleixner, G., Haeni, M., Hartmann, H., Hoch, G., Hug, C., Kahmen, A., Lehmann, M. M., Li, M.-H., Luster, J., Peter, M., Poll, C., Rigling, A., Rissanen, K. A., Ruehr, N. K., Saurer, M., Schaub, M., Schönbeck, L., Stern, B., Thomas, F. M., Werner, R. A., Werner, W., Wohlgemuth, T., Hagedorn, F., Gessler, A. (2020). Rhizosphere activity in an old-growth forest reacts rapidly to changes in soil moisture and shapes whole-tree carbon allocation. Proc.Natl.Acad.Sci.USA. doi:10.1073/pnas.2014084117.
13Anslan, S., Rad, M. A., Buckel, J., Galindo, P. E., Kai, J., Kang, W., Keys, L., Maurischat, P., Nieberding, F., Reinosch, E., Tang, H., Tran, T. V., Wang, Y., Schwalb, A. (2020). Reviews and syntheses: How do abiotic and biotic processes respond to climatic variations in the Nam Co catchment (Tibetan Plateau)? Biogeosciences, 17(5), 1261-1279. doi:10.5194/bg-17-1261-2020.
14Ulrich, J., Bucher, S. F., Eisenhauer, N., Schmidt, A., Türke, M., Gebler, A., Barry, K., Lange, M., Römermann, C. (2020). Invertebrate decline leads to shifts in plant species abundance and phenology. Frontiers in Plant Science, 11: 542125. doi:10.3389/fpls.2020.542125.
15Jochum, M., Fischer, M., Isbell, F., Roscher, C., van der Plas, F., Boch, S., Bönisch, G., Buchmann, N., Catford, J. A., Cavender-Bares, J., Ebeling, A., Eisenhauer, N., Gleixner, G., Hölzel, N., Kattge, J., Klaus, V. H., Kleinebecker, T., Lange, M., Le Provost, G., Meyer, S. T., Molina-Venegas, R., Mommer, L., Oelmann, Y., Penone, C., Prati, D., Reich, P. B., Rindisbacher, A., Schäfer, D., Scheu, S., Schmid, B., Tilman, D., Tscharntke, T., Vogel, A., Wagg, C., Weigelt, A., Weisser, W. W., Wilcke, W., Manning, P. (2020). The results of biodiversity-ecosystem functioning experiments are realistic. Nature Ecology & Evolution. doi:10.1038/s41559-020-1280-9.
Directions | Disclaimer | Data Protection | Contact | Internal | Webmail | Local weather | PRINT | © 2011-2020 Max Planck Institute for Biogeochemistry