© J. Helm/BGC

Department Biogeochemical Processes

Prof. Trumbore

The Biogeochemical Processes Division studies key processes and organisms that regulate the exchange of energy, water, and chemical compounds between ecosystems and their environments, and how these processes are affected by changes in climate and land use.

Within this broad goal, the Department maintains a focus on processes that are critical to understanding feedbacks between the land carbon cycle and climate and where lack of fundamental understanding currently limits the ability to predict the role of land as a source or sink for carbon in the coming decades to centuries. Broadly, the research in the Department shares the common goal to investigate processes that control how long carbon resides in ecosystem compartments, at spatial scales that span organisms to landscapes. Because of the importance of carbon to living organisms in storing energy and building structures, these processes are also fundamental to the functioning of ecosystems and their response to change.  

At the organism (microbe or plant) scale, we investigate how environmental controls such as drought or substrate availability influence resource allocation and activity in ways that can alter the timescales of carbon storage. At the ecosystem scale, we investigate how biotic (e.g. community diversity) and abiotic factors (mineralogy or climate) alter land-atmosphere exchange and the timescales for stabilization or destabilization of C in soils. At the landscape scale, we assess how disturbance processes such as fire, drought, windthrow and herbivory, can alter ecosystem carbon stocks and cycling.

Approaches and Tools

Quantifying responses and feedbacks in complex, coupled systems requires a range of tools and approaches. Laboratory experiments manipulate individual factors such as temperature, biodiversity or nutrient availability to document how different components of the ecosystem respond to changing environmental conditions. We participate in large field experiments that manipulate biodiversity (Jena experiment) and disturbances such as fire (Tanguro experiment).  Field observations of gradients of biodiversity through land management (Biodiversity Exploratories), or windthrows (ATTO) provide long-term field ‘experiments’.  Links to our own Theory group, as well as other modeling groups in the Institute allow us to use our results to test theories/models of ecosystem/organism function. We also actively develop new analytical tools that allow us to evaluate the importance of processes across a range of spatial and temporal scales.

Recent Publications

Hennecke, J.; Bassi, L.; Mommer, L.; Albracht, C.; Bergmann, J.; Eisenhauer, N.; Guerra, C. A.; Heintz-Buschart, A.; Kuyper, T. W.; Lange, M. et al.; Solbach, M. D.; Weigelt, A.: Responses of rhizosphere fungi to the root economics space in grassland monocultures of different age. New Phytologist 240 (5), pp. 2035 - 2049 (2023)
Munoz, E.; Chanca, I.; Sierra, C.: Increased atmospheric CO2 and the transit time of carbon in terrestrial ecosystems. Global Change Biology 29 (23), pp. 6441 - 6452 (2023)
Tanunchai, B.; Ji, L.; Schroeter, S. A.; Wahdan, S. F.; Thongsuk, K.; Hilke, I.; Gleixner, G.; Buscot, F.; Schulze, E. D.; Noll, M. et al.; Purahong, W.: Tree mycorrhizal type regulates leaf and needle microbial communities, affects microbial assembly and co-occurrence network patterns, and influences litter decomposition rates in temperate forest. Frontiers in Plant Science 14, 1239600 (2023)
Eglinton, T. I.; Graven, H. D.; Raymond, P. A.; Trumbore, S. E.: A special issue preface: Radiocarbon in the Anthropocene. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20220209 (2023)
Eglinton, T. I.; Graven, H. D.; Raymond, P. A.; Trumbore, S. E.; Aluwihare, L.; Bard, E.; Basu, S.; Friedlingstein, P.; Hammer, S.; Lester, J. et al.; Sanderman, J.; Schuur, E. A. G.; Sierra, C. A.; Synal, H.-A.; Turnbull, J. C.; Wacker, L.: Making the case for an International Decade of Radiocarbon. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230081 (2023)
Bramble, D. S.; Ulrich, S.; Schöning, I.; Mikutta, R.; Brandt, L.; Poll, C.; Kandeler, E.; Mikutta, C.; Konrad, A.; Siemens, J. et al.; Yang, Y.; Polle, A.; Schall, P.; Ammer, C.; Kaiser, K.; Schrumpf, M.: Formation of mineral-associated organic matter in temperate soils is primarily controlled by mineral type and modified by land use and management intensity. Global Change Biology (2023)
Argens, L.; Weisser, W.; Ebeling, A.; Eisenhauer, N.; Lange, M.; Oelmann, Y.; Roscher, C.; Schielzeth, H.; Schmid, B.; Wilcke, W. et al.; Meyer, S.: Relationships between ecosystem functions vary among years and plots and are driven by plant species richness. Oikos, e10096 (2023)
Forzieri, G.; Dutrieux, L. P.; Elia, A.; Eckhardt, B.; Caudullo, G.; Taboada, F. Á.; Andriolo, A.; Bălăcenoiu, F.; Bastos, A.; Buzatu, A. et al.; Dorado, F. C.; Dobrovolný, L.; Duduman, M.-L.; Fernandez-Carrillo, A.; Hernández-Clemente, R.; Hornero, A.; Ionuț, S.; Lombardero, M. J.; Junttila, S.; Lukeš, P.; Marianelli, L.; Mas, H.; Mlčoušek, M.; Mugnai, F.; Nețoiu, C.; Nikolov, C.; Olenici, N.; Olsson, P.-O.; Paoli, F.; Paraschiv, M.; Patočka, Z.; Pérez-Laorga, E.; Quero, J. L.; Rüetschi, M.; Stroheker, S.; Nardi, D.; Ferenčík, J.; Battisti, A.; Hartmann, H.; Nistor, C.; Cescatti, A.; Beck, P. S. A.: The Database of European Forest Insect and Disease Disturbances: DEFID2. Global Change Biology 29 (21), pp. 6040 - 6065 (2023)
Helm, J.; Muhr, J.; Hilman, B.; Kahmen, A.; Schulze, E. D.; Trumbore, S. E.; Herrera-Ramirez, D.; Hartmann, H.: Carbon dynamics during long-term starving poplar trees—the importance of older carbohydrates and a shift to lipids during survival. Tree Physiology, tpad135 (2023)
Herrera-Ramirez, D.; Hartmann, H.; Römermann, C.; Trumbore, S. E.; Muhr, J.; Maracahipes-Santos, L.; Brando, P.; Silvério, D.; Huang, J.; Kuhlmann, I. et al.; Sierra, C. A.: Anatomical distribution of starch in the stemwood influences carbon dynamics and suggests storage-growth trade-offs in some tropical trees. Journal of Ecology 111 (11), pp. 2532 - 2548 (2023)

Go to Editor View