Department Biogeochemical Signals

Department Biogeochemical Signals

Interactions between land eocsystems, atmosphere and the climate system.

The aim of the Biogeochemical Signals Department is to improve our understanding of the interactions between biogeochemical element cycles on land surface and the atmosphere on local, regional and global scales. In addition to the climate-relevant cycles of carbon and water, our research focuses on the essential  nutrients nitrogen (N) and phosphorus (P) and their importance for plant growth, soil dynamics and feedbacks between biospheric processes and climate.

We utilise atmospheric greenhouse gas observations and transport modelling and remote sensing data to to understand regional variations in the terrestrial greenhouse gas balance and identify underlying biospheric signals. We combine knowledge about eco-physiological processes with observations and modelling of biogeochemical cycles at different spatial scales to understand the underlying drivers of these biospheric signals.

We develop complex models to simulate terrestrial biogeochemical element cycles and their dependence on vegetation and soil properties as well as local climate. Based on detailed knowledge of physiological principles of ecosystem processes, we seek to improve these models and adapt them better to capture biological processes at climate relevant scales. We test the improved models with different ecosystem and atmospheric observations. Our new findings also feed into global models of the Earth system to estimate the impact of increasing human influence on terrestrial ecosystems.


Latest Key Results

Lacroix, F.,  Zaehle, S.,  Caldararu, S.,  Schaller, J.,  Stimmler, P.,  Holl, D.,  Kutzbach, L., &  Göckede, M. (2022). Mismatch of N release from the permafrost and vegetative uptake opens pathways of increasing nitrous oxide emissions in the high Arctic. Global Change Biology,  00,  1– 18.

Selected Publications

Stimmler, P.; Priemé, A.; Elberling, B.; Goeckede, M.; Schaller, J.: Arctic soil respiration and microbial community structure driven by silicon and calcium. Science of the Total Environment 838 (Part 2), 156152 (2022)
Helbig, M.; Živković, T.; Alekseychik, P.; Aurela, M.; El-Madany, T. S.; Euskirchen, E. S.; Flanagan, L. B.; Griffis, T. J.; Hanson, P. J.; Hattakka, J. et al.; Helfter, C.; Hirano, T.; Humphreys, E. R.; Kiely, G.; Kolka, R. K.; Laurila, T.; Leahy, P. G.; Lohila, A.; Mammarella, I.; Nilsson, M. B.; Panov, A.; Parmentier, F. J. W.; Peichl, M.; Rinne, J.; Roman, D. T.; Sonnentag, O.; Tuittila, E.-S.; Ueyama, M.; Vesala, T.; Vestin, P.; Weldon, S.; Weslien, P.; Zaehle, S.: Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change (2022)
Davies-Barnard, T.; Zaehle, S.; Friedlingstein, P.: Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models. Biogeosciences 19 (14), pp. 3491 - 3503 (2022)
Lacroix, F.; Zaehle, S.; Caldararu, S.; Schaller, J.; Stimmler, P.; Holl, D.; Kutzbach, L.; Göckede, M.: Mismatch of N release from the permafrost and vegetative uptake opens pathways of increasing nitrous oxide emissions in the high Arctic. Global Change Biology (accepted)
Custódio, D.; Borrego, C.; Relvas, H.: Worldwide evaluation of CAMS-EGG4 CO2 data re-analysis at the surface level. Toxics 10 (6), 331 (2022)


Go to Editor View