Interactions between land eocsystems, atmosphere and the climate system.
The aim of the Biogeochemical Signals Department is to improve our understanding of the interactions between biogeochemical element cycles on land surface and the atmosphere on local, regional and global scales. In addition to the climate-relevant cycles of carbon and water, our research focuses on the essential nutrients nitrogen (N) and phosphorus (P) and their importance for plant growth, soil dynamics and feedbacks between biospheric processes and climate.
We utilise atmospheric greenhouse gas observations and transport modelling and remote sensing data to to understand regional variations in the terrestrial greenhouse gas balance and identify underlying biospheric signals. We combine knowledge about eco-physiological processes with observations and modelling of biogeochemical cycles at different spatial scales to understand the underlying drivers of these biospheric signals.
We develop complex models to simulate terrestrial biogeochemical element cycles and their dependence on vegetation and soil properties as well as local climate. Based on detailed knowledge of physiological principles of ecosystem processes, we seek to improve these models and adapt them better to capture biological processes at climate relevant scales. We test the improved models with different ecosystem and atmospheric observations. Our new findings also feed into global models of the Earth system to estimate the impact of increasing human influence on terrestrial ecosystems.
Latest Key Results
Simulated response of gross primary productivity (GPP) and total ecosystem respiration (TER, panel a), net ecosystem production (NEP, panel b) and N2O emissions (panel c) to climate effects other than increased permafrost nutrients and carbon (other climate, green), permafrost C, N, and P (orange) and CO2 fertilization (khaki), all averaged over all sites.
Simulated response of gross primary productivity (GPP) and total ecosystem respiration (TER, panel a), net ecosystem production (NEP, panel b) and N2O emissions (panel c) to climate effects other than increased permafrost nutrients and carbon (other climate, green), permafrost C, N, and P (orange) and CO2 fertilization (khaki), all averaged over all sites.
Lacroix, F., Zaehle, S., Caldararu, S., Schaller, J., Stimmler, P., Holl, D., Kutzbach, L., & Göckede, M. (2022). Mismatch of N release from the permafrost and vegetative uptake opens pathways of increasing nitrous oxide emissions in the high Arctic. Global Change Biology, 00, 1– 18. https://doi.org/10.1111/gcb.16345
Latest Publications
Friedlingstein, P.; O'Sullivan, M.; Jones, M. W.; Andrew, R. M.; Bakker, D. C. E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I. T.; Peters, G. P.et al.; Peters, W.; Pongratz, J.; Schwingshackl, C.; Sitch, S.; Canadell, J. G.; Ciais, P.; Jackson, R. B.; Alin, S. R.; Anthoni, P.; Barbero, L.; Bates, N. R.; Becker, M.; Bellouin, N.; Decharme, B.; Bopp, L.; Brasika, I. B. M.; Cadule, P.; Chamberlain, M. A.; Chandra, N.; Chau, T.-T.-T.; Chevallier, F.; Chini, L. P.; Cronin, M.; Dou, X.; Enyo, K.; Evans, W.; Falk, S.; Feely, R. A.; Feng, L.; Ford, D. J.; Gasser, T.; Ghattas, J.; Gkritzalis, T.; Grassi, G.; Gregor, L.; Gruber, N.; Gürses, Ö.; Harris, I.; Hefner, M.; Heinke, J.; Houghton, R. A.; Hurtt, G. C.; Iida, Y.; Ilyina, T.; Jacobson, A. R.; Jain, A.; Jarníková, T.; Jersild, A.; Jiang, F.; Jin, Z.; Joos, F.; Kato, E.; Keeling, R. F.; Kennedy, D.; Goldewijk, K. K.; Knauer, J.; Korsbakken, J. I.; Körtzinger, A.; Lan, X.; Lefèvre, N.; Li, H.; Liu, J.; Liu, Z.; Ma, L.; Marland, G.; Mayot, N.; McGuire, P. C.; McKinley, G. A.; Meyer, G.; Morgan, E. J.; Munro, D. R.; Nakaoka, S.-I.; Niwa, Y.; O'Brien, K. M.; Olsen, A.; Omar, A. M.; Ono, T.; Paulsen, M.; Pierrot, D.; Pocock, K.; Poulter, B.; Powis, C. M.; Rehder, G.; Resplandy, L.; Robertson, E.; Rödenbeck, C.; Rosan, T. M.; Schwinger, J.; Séférian, R.; Smallman, T. L.; Smith, S. M.; Sospedra-Alfonso, R.; Sun, Q.; Sutton, A. J.; Sweeney, C.; Takao, S.; Tans, P. P.; Tian, H.; Tilbrook, B.; Tsujino, H.; Tubiello, F.; van der Werf, G. R.; van Ooijen, E.; Wanninkhof, R.; Watanabe, M.; Wimart-Rousseau, C.; Yang, D.; Yang, X.; Yuan, W.; Yue, X.; Zaehle, S.; Zeng, J.; Zheng, B.: Global Carbon Budget 2023. Earth System Science Data 15 (12), pp. 5301 - 5369 (2023)
Zickfeld, K.; MacIsaac, A. J.; Canadell, J. G.; Fuss, S.; Jackson, R. B.; Jones, C. D.; Lohila, A.; Matthews, H. D.; Peters, G. P.; Rogelj, J.et al.; Zaehle, S.: Net-zero approaches must consider Earth system impacts to achieve climate goals. Nature Climate Change 13, pp. 1298 - 1305 (2023)
Bansal, S.; Creed, I. F.; Tangen, B. A.; Bridgham, S. D.; Desai, A. R.; Krauss, K. W.; Neubauer, S. C.; Noe, G. B.; Rosenberry, D. O.; Trettin, C.et al.; Wickland, K. P.; Allen, S. T.; Arias‑Ortiz, A.; Armitage, A. R.; Baldocchi, D.; Banerjee, K.; Bastviken, D.; Berg, P.; Bogard, M. J.; Chow, A. T.; Conner, W. H.; Craft, C.; Creamer, C.; DelSontro, T.; Duberstein, J. A.; Eagle, M.; Fennessy, M. S.; Finkelstein, S. A.; Göckede, M.; Grunwald, S.; Halabisky, M.; Herbert, E.; Jahangir, M. M. R.; Johnson, O. F.; Jones, M. C.; Kelleway, J. J.; Knox, S.; Kroeger, K. D.; Kuehn, K. A.; Lobb, D.; Loder, A. L.; Ma, S.; Maher, D. T.; McNicol, G.; Meier, J.; Middleton, B. A.; Mills, C.; Mistry, P.; Mitra, A.; Mobilian, C.; Nahlik, A. M.; Newman, S.; O’Connell, J. L.; Oikawa, P.; van der Burg, M. P.; Schutte, C. A.; Song, C.; Stagg, C. L.; Turner, J.; Vargas, R.; Waldrop, M. P.; Wallin, M. B.; Wang, Z. A.; Ward, E. J.; Willard, D. A.; Yarwood, S.; Zhu, X.: Practical guide to measuring wetland carbon pools and fluxes. Wetlands: Journal of the Society of Wetland Scientists 43 (8), 105 (2023)