group photo of employees of the department

Department Biogeochemical Integration

Prof. Dr. Markus Reichstein

How do ecosystems respond to changing weather patterns, rising temperatures and increasing carbon dioxide concentrations? Is the effect of precipitation more important than that of temperature? Or are ecosystem dynamics more strongly affected by nutrient availability? What is the role of extreme events in shaping biogeochemical cycles? To find out the answers we need to understand the interactions among three complex systems: climate, vegetation, and soil. Thus, we combine experiments and in-situ long-term observation with Earth Observations gathered by aircraft and satellites across a range of spatial scales, and embrace data-driven machine learning and theory-driven mechanistic modelling. With our research, we try to understand how the terrestrial biosphere reacts to and exerts feedbacks on ongoing environmental change and variation in atmospheric conditions.

Latest publications

1.
Khand, K.; Senay, G. B.; Friedrichs, M.; Yi, K.; Fisher, J. B.; Wang, L.; Suvočarev, K.; Ahmadi, A.; Chu, H.; Good, S. et al.; Mallick, K.; Missik, J.; Nelson, J. A.; Reed, D. E.; Wang, T.; Xiao, X.: A novel approach to increase accuracy in remotely sensed evapotranspiration through basin water balance and flux tower constraints. Journal of Hydrology 662/Part A, 133824 (2025)
2.
Li, D.; Chen, J. M.; Duveiller, G.; Frankenberg, C.; Köhler, P.; Kang: A more precise retrieval of sun-induced chlorophyll fluorescence from satellite data using artificial neural networks. Remote Sensing of Environment 330, 114987 (2025)
3.
Wang, Lijun, L.; Shi, L.; Reimers, C.; Wang, Y.; He, L.; Wang, Y.; Reichstein, M.; Jiang, S.: A self-supervised deep learning model for enhanced generalization in soil moisture prediction. Journal of Hydrology 662 (PArt B), 133974 (2025)
4.
Paulus, S.; Migliavacca, M.; Reichstein, M.; Orth, R.; Lee, S.-C.; Carrara, A.; Hildebrandt, A.; Nelson, J. A.: Insights into water vapor uptake by dry soils using a global eddy covariance observation network. Global Change Biology 31 (10), e70547 (2025)
5.
Davidson, S. J.; Malhotra, A.; Jassey, V. E. J.; Strack, M.; Aitova, E.; Anderson, R.; Atkinson, L. J.; Barel, J. M.; Bird, M.; Brehier, C. et al.; Donaldson-Selby, G.; Duley, E.; Eklof, J.; de Eyto, E.; Granath, G.; Grant, A.; Hartmann, A.; Holland, A.; Huth, V.; Jones, C. P.; Lee, S.-C.; Lopatin, J.; Milner, A. M.; Peacock, M.; Peichl, M.; Perez-Quezada, J. F.; Perryman, C. R.; Pickard, A.; Rautakoski, H.; Silvester, E.; Virkkala, A.-M.; Wegener, E.: The PeatPic project: predicting plot-scale green leaf phenology across peatlands. Environmental Research Letters 20 (11), 114002 (2025)
6.
Besnard, S.; Heinrich, V. H. A.; Carvalhais, N.; Ciais, P.; Herold, M.; Luijkx, I.; Peters, W.; Suarez, D. R.; Santoro, M.; Yang, H.: Global covariation of forest age transitions with the net carbon balance. Nature Ecology & Evolution 9, pp. 1848 - 1860 (2025)
7.
Katal, N.; Rzanny, M.; Mäder, P.; Boho, D.; Wittich, H. C.; Tautenhahn, S.; Bebber, A.; Wäldchen, J.: Expanding phenological insights: automated phenostage annotation with community science plant images. International Journal of Biometeorology 69, pp. 2353 - 2367 (2025)
8.
Milis, A.; Hofmann, M.; Mäder, P.; Wäldchen, J.; de Haan, M.; Ballings, P.; Van der Beeten, I.; Goffinet, B.; Vanderpoorten, A.: Towards the automatized identification of moss species from their spore morphology. Annals of Botany, mcaf215 (2025)
Go to Editor View