Sarosh Alam Ghausi

Doctoral Researcher
Research group Biosphere theory and modeling (BTM)
Intern. Max Planck Research School for Global Biogeochemical Cycles (IMPRS-gBGC)

Curriculum Vitae


2020 - Present: Ph.D at Max Planck Institute for Biogeochemistry and Karlsruhe Institute of Technology (KIT)

Nov 2022 - Feb 2023: Visiting Researcher at Harvard, MA, USA

2018 - 2020: Masters in Water resources from IIT Bombay, India

2014 - 2018: Bachelors in Civil Engineering from AMU, India

Research Interest:

My research centers around hydro-climatology with a focus on extreme weather events and land-atmosphere interactions. Currently, I am working on developing and utilizing physics-based box models of the Earth system that explicitly consider thermodynamic limits as a constraint on surface-atmosphere exchange. These models then enable me to investigate various aspects of temperature variability, turbulent exchange and hydrologic sensitivities. By integrating observations, data analysis, and modeling approaches, I seek to contribute to the advancement of our understanding of the Earth system and its response to climate change.

Journal Publications:

  1. Ghausi, S. A., Tian, Y., Zehe, E., & Kleidon, A. (2023). Radiative controls by clouds and thermodynamics shape surface temperatures and turbulent fluxes over land. Proceedings of the National Academy of Sciences of the United States of America, 120(29), e2220400120.
  2. Ghausi, S. A., & Ghosh, S. (2020). Diametrically opposite scaling of extreme precipitation and streamflow to temperature in South and Central Asia. Geophysical Research Letters, 47, e2020GL089386.
  3. Ghausi, S. A., Ghosh, S., & Kleidon, A. (2022). Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling. Hydrology and Earth System Sciences, 26(16), 4431-4446.
  4. Tian, Y., Ghausi, S. A., Zhang, Y., Zhang, M., Xie, D., Cao, Y., ... & Kleidon, A. (2023). Radiation as the dominant cause of high-temperature extremes on the eastern Tibetan Plateau. Environmental Research Letters.
  5. Tian, Y., Zhong, D., Ghausi, S. A., Wang, G., & Kleidon, A. (2023). Understanding variations in downwelling longwave radiation using Brutsaert's equation. Earth System Dynamics (under review), 2023, 1-17.
  6. Sahastrabuddhe, R., Ghausi, S. A., Joseph, J., & Ghosh, S. (2023). Indian Summer Monsoon Rainfall in a changing climate: a review. Journal of Water and Climate Change, 14(4), 1061-1088.


  1. Ghausi, S.A., Muzzammil, M. (2021). Grey Water Characterization and Its Management. In: Jha, R., Singh, V.P., Singh, V., Roy, L., Thendiyath, R. (eds) Water Resources Management and Reservoir Operation . Water Science and Technology Library, vol 107. Springer, Cham.


  1. Ghausi, S. A., McColl, K., & Kleidon, A. (2023). Determining the radiative and hydrologic controls on the diurnal air-temperature range using the thermodynamic limit of maximum power (No. EGU23-7721). Copernicus Meetings.
  2. Ghausi, S. A., Kleidon, A., and Ghosh, S.: Radiative cooling by clouds affects the precipitation - temperature scaling derived from observations, EMS Annual Meeting 2021, online, 6–10 Sep 2021, EMS2021-108,, 2021.
  3. Ghausi, S. and Kleidon, A.:  How much of the surface energy partitioning can be explained by controls imposed by thermodynamics?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4528,, 2022.
  4. Ghausi, S. A., Kleidon, A., and Ghosh, S.: Attributing the negative scaling of extreme precipitation with temperature over India to cloud radiative cooling during the monsoon season, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7902,, 2021
  5. Kleidon, A., Renner, M., Panwar, A., and Ghausi, S. A.: Understanding land surface-atmosphere interactions at the diurnal scale from energetic and thermodynamic constraints, EMS Annual Meeting 2021, online, 6–10 Sep 2021, EMS2021-107,, 2021
  6. Ghausi, Sarosh Alam, Axel Kleidon, and Subimal Ghosh. "Cloud radiative cooling explains the global variability in precipitation-temperature scaling derived from observations." AGU Fall Meeting Abstracts. Vol. 2021. 2021.
  7. Ghausi, S A, Tian Y, Zehe E, and Kleidon A. "How much land-surface information is required to predict the seasonal variation in turbulent fluxes and surface temperatures?" AGU Fall Meeting Abstracts. Vol. 2022. 2022.

    Academic Merits:

      1. Innovative Student Project award at Master's level by Indian National Academy of Engineering (INAE) - 2020
      2. Prof. UC Kothyari Best Master's Thesis Award by Indian Society of Hydraulics (ISH) - 2020
      3. Best Paper Award at HYDRO 2018 International Conference - 2018
      4. Peer reviewer for Journals: Hydrology and Earth System Sciences (HESS), Earth System Dynamics (ESD), Climatic Change (CC)
      Go to Editor View