Migliavacca, M.; Pérez‑Priego, O.; Rossini, M.; El-Madany, T. S.; Moreno, G.; van der Tol, C.; Rascher, U.; Berninger, A.; Bessenbacher, V.; Burkart, A.et al.; Carrara, A.; Fava, F.; Guan, J.-H.; Hammer, T. W.; Henkel, K.; Juarez-Alcalde, E.; Julitta, T.; Kolle, O.; Martın, M. P.; Musavi, T.; Pacheco-Labrador, J.; Perez-Burgueno, A.; Wutzler, T.; Zaehle, S.; Reichstein, M.: Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytologist 214 (3), pp. 1078 - 1091 (2017)
Sippel, S.; Zscheischler, J.; Mahecha, M. D.; Orth, R.; Reichstein, M.; Vogel, M.; Seneviratne, S. I.: Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics. Earth System Dynamics 8 (2), pp. 387 - 403 (2017)
Chu, H.; Baldocchi, D. D.; John, R.; Wolf, S.; Reichstein, M.: Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. Journal of Geophysical Research: Biogeosciences 122 (2), pp. 289 - 307 (2017)
Knauer, J.; Zaehle, S.; Reichstein, M.; Medlyn, B. E.; Forkel, M.; Hagemann, S.; Werner, C.: The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical implications. New Phytologist 213 (4), pp. 1654 - 1666 (2017)
Reuter, M.; Buchwitz, M.; Hilker, M.; Heymann, J.; Bovensmann, H.; Burrows, J. P.; Houweling, S.; Liu, Y. Y.; Nassar, R.; Chevallier, F.et al.; Ciais, P.; Marshall, J.; Reichstein, M.: How much CO2 is taken up by the European terrestrial biosphere? Bulletin of the American Meteorological Society 98 (4), pp. 665 - 671 (2017)
Sippel, S.; Zscheischler, J.; Heimann, M.; Lange, H.; Mahecha, M. D.; van Oldenborgh, G. J.; Otto, F. E. L.; Reichstein, M.: Have precipitation extremes and annual totals been increasing in the world’s dry regions over the last 60 years? Hydrology and Earth System Sciences 21 (1), pp. 441 - 458 (2017)
Sippel, S.; Zscheischler, J.; Reichstein, M.: Ecosystem impacts of climate extremes crucially depend on the timing (commentary). Proceedings of the National Academy of Sciences of the United States of America 113 (21), pp. 5768 - 5770 (2016)
Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.: Evaluating the convergence between eddy covariance and biometric methods for assessing carbon budgets of forests. Nature Communications 7, 13717 (2016)
Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Thonicke, K.; Mahecha, M. D.: A novel bias correction methodology for climate impact simulations. Earth System Dynamics 7 (1), pp. 71 - 88 (2016)
Gross, A.; Turner, B. L.; Wright, S. J.; Tanner, E. V. J.; Reichstein, M.; Weiner, T.; Angert, A.: Oxygen isotope ratios of plant available phosphate in lowland tropical forest soils. Soil Biology and Biochemistry 88, pp. 354 - 361 (2015)
Ahrens, B.; Braakhekke, M. C.; Guggenberger, G.; Schrumpf, M.; Reichstein, M.: Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: Insights from a calibrated process model. Soil Biology and Biochemistry 88, pp. 390 - 402 (2015)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
Since the first measurement flight in 1994, the European research infrastructure IAGOS has developed a measurement technique that is used in commercial airplanes and regularly provide extensive climate data from the atmosphere.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.