Uribe, M. R.; Sierra, C.; Dukes, J. S.: Seasonality of tropical photosynthesis: A pantropical map of correlations with precipitation and radiation and comparison to model outputs. Biogeosciences 126 (11), e2020JG006123 (2021)
Stoner, S.; Hoyt, A. M.; Trumbore, S. E.; Sierra, C.; Schrumpf, M.; Doetterl, S.; Baisden, W. T.; Schipper, L. A.: Soil organic matter turnover rates increase to match increased inputs in grazed grasslands. Biogeochemistry 156, pp. 145 - 160 (2021)
Sierra, C.; Metzler, H.; Mueller, M.; Kaiser, E.: Closed-loop and congestion control of the global carbon climate system. Climatic Change 165, 15 (2021)
Schulze, E. D.; Sierra, C.; Egenolf, V.; Woerdehoff, R.; Irsinger, R.; Baldamus, C.; Stupak, I.; Spellmann, H.: Response to the letters by Kun et al. and Booth et al. GCB Bioenergy 12 (12), pp. 1038 - 1042 (2020)
Schulze, E. D.; Sierra, C.; Egenolf, V.; Woerdehoff, R.; Irsinger, R.; Baldamus, C.; Stupak, I.; Spellmann, H.: Forest management contributes to climate mitigation by reducing fossil fuel consumption: A response to the letter by Welle et al. GCB Bioenergy 13, pp. 286 - 287 (2020)
Crow, S. E.; Wells, J. M.; Sierra, C. A.; Youkhana, A. H.; Ogoshi, R. M.; Richardson, D.; Glazer, C. T.; Meki, M. N.; Kiniry, J. R.: Carbon flow through energycane agroecosystems established post-intensive agriculture. GCB Bioenergy 12 (10), pp. 806 - 817 (2020)
Ceballos-Núñez, V.; Müller, M.; Sierra, C.: Towards better representations of carbon allocation in vegetation: a conceptual framework and mathematical tool. Theoretical Ecology 13 (3), pp. 317 - 332 (2020)
Jimenez, E. M.; Peñuela‐Mora, M. C.; Moreno, F.; Sierra, C.: Spatial and temporal variation of forest net primary productivity components on contrasting soils in northwestern Amazon. Ecosphere 11 (8), e03233 (2020)
Herrera-Ramirez, D.; Muhr, J.; Hartmann, H.; Roemermann, C.; Trumbore, S. E.; Sierra, C.: Probability distributions of nonstructural carbon ages and transit times provide insights into carbon allocation dynamics of mature trees. New Phytologist 26 (5), pp. 1299 - 1311 (2020)
Schulze, E. D.; Sierra, C.; Egenolf, V.; Woerdehoff, R.; Irslinger, R.; Baldamus, C.; Stupak, I.; Spellman, H.: The climate change mitigation effect of bioenergy from sustainably managed forests in Central Europe. GCB Bioenergy 12 (3), pp. 186 - 197 (2020)
Lawrence, C. R.; Beem-Miller, J.; Hoyt, A. M.; Monroe, G.; Sierra, C. A.; Stoner, S.; Heckman, K.; Blankinship, J. C.; Crow, S. E.; McNicol, G.et al.; Trumbore, S. E.; Levine, P. A.; Vindušková, O.; Todd-Brown, K.; Rasmussen, C.; Pries, C. E. H.; Schädel, C.; McFarlane, K.; Doetterl, S.; Hatté, C.; He, Y.; Treat, C.; Harden, J. W.; Torn, M. S.; Estop-Aragonés, C.; Berhe, A. A.; Keiluweit, M.; Kuhnen, Á. D. R.; Marin-Spiotta, E.; Plante, A. F.; Thomson, A.; Shi, Z.; Schimel, J. P.; Vaughn, L. J. S.; von Fromm, S. F.; Wagai, R.: An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth System Science Data 12 (1), pp. 61 - 76 (2020)
Metzler, H.; Zhu, Q.; Riley, W.; Hoyt, A. M.; Müller, M.; Sierra, C.: Mathematical reconstruction of land carbon models from their numerical output: computing soil radiocarbon from 12C dynamics. Journal of Advances in Modeling Earth Systems 12 (1), e2019MS001776 (2020)
Schädel, C.; Beem-Miller, J.; Azizi-Rad, M.; Crow, S. E.; Pries, C. H.; Ernakovich, J.; Hoyt, A. M.; Plante, A.; Stoner, S.; Treat, C. C.et al.; Sierra, C.: Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures. Earth System Science Data 12 (3), pp. 1511 - 1524 (2020)
Sierra, C. A.; Hoyt, A. M.; He, Y.; Trumbore, S. E.: Soil organic matter persistence as a stochastic process: age and transit time distributions of carbon in soils. Global Biogeochemical Cycles 32 (10), pp. 1574 - 1588 (2018)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
Since the first measurement flight in 1994, the European research infrastructure IAGOS has developed a measurement technique that is used in commercial airplanes and regularly provide extensive climate data from the atmosphere.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.