Sierra, C. A.; Quetin, G. R.; Metzler, H.; Mueller, M.: A decrease in the age of respired carbon from the terrestrial biosphere and increase in the asymmetry of its distribution. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20220200 (2023)
Sierra, C.; Metzler, H.; Mueller, M.; Kaiser, E.: Closed-loop and congestion control of the global carbon climate system. Climatic Change 165, 15 (2021)
Metzler, H.; Zhu, Q.; Riley, W.; Hoyt, A. M.; Müller, M.; Sierra, C.: Mathematical reconstruction of land carbon models from their numerical output: computing soil radiocarbon from 12C dynamics. Journal of Advances in Modeling Earth Systems 12 (1), e2019MS001776 (2020)
Sierra, C. A.; Ceballos-Núñez, V.; Metzler, H.; Mueller, M.: Representing and understanding the carbon cycle using the theory of compartmental dynamical systems. Journal of Advances in Modeling Earth Systems 10 (8), pp. 1729 - 1734 (2018)
Metzler, H.; Mueller, M.; Sierra, C.: Transit-time and age distributions for nonlinear time-dependent compartmental systems. Proceedings of the National Academy of Sciences of the United States of America 115 (6), pp. 1150 - 1155 (2018)
Metzler, H.; Sierra, C.: Linear autonomous compartmental models as continuous-time Markov chains: transit-time and age distributions. Mathematical Geosciences 50 (1), pp. 1 - 34 (2018)
Sierra, C.; Müller, M.; Metzler, H.; Manzoni, S.; Trumbore, S. E.: The muddle of ages, turnover, transit, and residence times in the carbon cycle. Global Change Biology 23 (5), pp. 1763 - 1773 (2017)
Metzler, H.: Compartmental systems as Markov chains: age, transit time, and entropy. Dissertation, 127 pp., Friedrich Schiller University Jena, Jena (2020)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.