Jung, M.; Le Maire, G.; Zaehle, S.; Luyssaert, S.; Vetter, M.; Churkina, G.; Ciais, P.; Viovy, N.; Reichstein, M.: Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe. Biogeosciences 4 (4), pp. 647 - 656 (2007)
Jung, M.; Vetter, M.; Herold, M.; Churkina, G.; Reichstein, M.; Zaehle, S.; Ciais, P.; Viovy, N.; Bondeau, A.; Chen, Y.et al.; Trusilova, K.; Feser, F.; Heimann, M.: Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global Biogeochemical Cycles 21 (4), p. Gb4021 (2007)
Vetter, M.; Wirth, C.; Böttcher, H.; Churkina, G.; Schulze, E.-D.; Wutzler, T.; Weber, G.: Partitioning direct and indirect human-induced effects on carbon sequestration of managed coniferous forests using model simulations and forest inventories. Global Change Biology 11 (5), pp. 810 - 827 (2005)
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
Land surface temperatures are shaped mostly by the heating by sunlight, but also by evaporation and convective heat transfer in the vertical. A new study determined the role of these two processes by employing a physical limit.
Axel Kleidon discusses contemporary issues relating to the Earth system, thermodynamics, energy conversion, and the water cycle, and explains the current state of scientific knowledge in these areas.