Buendía, C.; Kleidon, A.; Porporato, A.: The role of tectonic uplift, climate and vegetation in the long-term terrestrial phosphorous cycle. Biogeosciences 7 (6), pp. 2025 - 2038 (2010)
Dyke, J.; Kleidon, A.: The Maximum Entropy Production Principle: Its Theoretical Foundations and Applications to the Earth System. Entropy 12 (3), pp. 613 - 630 (2010)
Kleidon, A.: Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 368 (1910), pp. 181 - 196 (2010)
Kleidon, A.: A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 365 (1545), pp. 1303 - 1315 (2010)
Kleidon, A.: Life as the major driver of planetary geochemical disequilibrium: Reply to comments on "Life, hierarchy, and the thermodynamic machinery of planet Earth". Physics of Life Reviews 7 (4), pp. 473 - 476 (2010)
Kleidon, A.; Malhi, Y.; Cox, P. M.: Maximum entropy production in environmental and ecological systems Introduction. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 365 (1545), pp. 1297 - 1302 (2010)
Schymanski, S. J.; Kleidon, A.; Stieglitz, M.; Narula, J.: Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 365 (1545), pp. 1449 - 1455 (2010)
Simoncini, E.; Kleidon, A.; Gallori, E.: The emergence of life: Thermodynamics of chemical free energy generation in off-axis hydrothermal vent systems and its consequences for compartmentalization and life's origins. Journal of Cosmology 10, pp. 3325 - 3344 (2010)
Xu, X. K.; Kleidon, A.; Miller, L.; Wang, S. Q.; Wang, L. Q.; Dong, G. C.: Late Quaternary glaciation in the Tianshan and implications for palaeoclimatic change: a review. Boreas 39 (2), pp. 215 - 232 (2010)
Kleidon, A.: Climatic constraints on maximum levels of human metabolic activity and their relation to human evolution and global change. Climatic Change 95 (3-4), pp. 405 - 431 (2009)
Kleidon, A.; Adams, J.; Pavlick, R.; Reu, B.: Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity. Environmental Research Letters 4 (1), p. 014007 (2009)
Arens, S.; Kleidon, A.: Global sensitivity of weathering rates to atmospheric CO2 under the assumption of saturated river discharge. Mineralogical Magazine 72 (1), pp. 301 - 304 (2008)
Kleidon, A.; Schymanski, S.: Thermodynamics and optimality of the water budget on land: A review. Geophysical Research Letters 35 (20), p. L20404 (2008)
Kleidon, A.: Thermodynamics and environmental constraints make the biosphere predictable - a response to Volk. Climatic Change 85 (3-4), pp. 259 - 266 (2007)
The Germany-wide citizen science project GartenDiv will research plant diversity in Germany's gardens for the first time. A one-year pilot project will provide an overview of which plants thrive in gardens across the country.
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
The new research project "PollenNet" aims to use artificial intelligence to accurately predict the spread of pollen. In order to improve allergy prevention, experts are bringing together the latest interdisciplinary findings from a wide range of fields.
If rivers overflow their banks, the consequences can be devastating. Using methods of explainable machine learning, researchers at the Helmholtz Centre for Environmental Research (UFZ) have shown that floods are more extreme when several factors are involved in their development.
Plant observations collected with plant identification apps such as Flora Incognita allow statements about the developmental stages of plants - both on a small scale and across Europe.
We have gained a new external member: Prof. Dr. Christian Wirth has been appointed by the Senate of the Max Planck Society as External Scientific Member. As a former group leader and later fellow at the institute, Prof. Wirth initiated and supported the development of the TRY database, the world's largest collection on plant traits.
A new study shows a natural solution to mitigate the effects of climate change such as extreme weather events. Researchers found that a diverse plant community acts as a buffer against fluctuations in soil temperature. This buffer, in turn, can have a decisive influence on important ecosystem processes.