Clark, D. A.; Brown, S.; Kicklighter, D. W.; Chambers, J. Q.; Thomlinson, J. R.; Ni, J.; Holland, E. A.: Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications 11 (2), pp. 371 - 384 (2001)
Ni, J.: Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Climatic Change 49 (3), pp. 339 - 358 (2001)
Ni, J.; Zhang, X. S.; Scurlock, J. M. O.: Synthesis and analysis of biomass and net primary productivity in Chinese forests. Annals of Forest Science 58 (4), pp. 351 - 384 (2001)
Ni, J.: A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Mountain Research and Development 20 (1), pp. 80 - 89 (2000)
Ni, J.: Modelling vegetation distribution and net primary production along a precipitation gradient, the Northeast China Transect (NECT). Ekologia (Bratislava) 19 (4), pp. 375 - 386 (2000)
Ni, J.; Zhang, X.-S.: Climate variability, ecological gradient and the Northeast China Transect (NECT). Journal of Arid Environments 46 (3), pp. 313 - 325 (2000)
Ni, J.; Li, Y.-Y.; Zhang, X.-S.: The scientific significance of the north east China transect (NECT) to global change study by its ecogeographic characteristics. Acta Ecologica Sinica 19 (5), pp. 622 - 629 (1999)
Ni, J.; Zhang, X. S.: Classification of terrestrial biomes in China for global change and biodiversity studies. In: Biological diversity and the future of human beings, pp. 323 - 338 (Ed. Chen, Y.Y.). Science Press, Beijing (1998)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
Nitrogen fertilizers and nitrogen oxides from fossil fuels pollute the air and drinking water, lead to the over-fertilization of water bodies and terrestrial ecosystems, reduce biodiversity and damage the ozone layer. On balance, however, they have a cooling effect on the climate.