Tegen, I.; Werner, M.; Harrison, S. P.; Kohfeld, K. E.: Reply to comment by N. M. Mahowald et al. on "Relative importance of climate and land use in determining present and future global soil dust emission''. Geophysical Research Letters 31 (24), p. L24106 (2004)
Bopp, L.; Kohfeld, K. E.; Le Quéré, C.; Aumont, O.: Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18 (2), p. 1046 (2003)
Engelstädter, S.; Kohfeld, K. E.; Tegen, I.; Harrison, S. P.: Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data. Geophysical Research Letters 30 (6), p. 1294 (2003)
Frechen, M.; Oches, E. A.; Kohfeld, K. E.: Loess in Europe - mass accumulation rates during the Last Glacial Period. Quaternary Science Reviews 22 (18-19), pp. 1835 - 1857 (2003)
Kohfeld, K. E.; Harrison, S. P.: Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau. Quaternary Science Reviews 22 (18-19), pp. 1859 - 1878 (2003)
Bopp, L.; Kohfeld, K. E.; Le Quéré, C.; Aumont, O.: Dust impact on marine biota and atmospheric CO2 in glacial periods. Geochimica et Cosmochimica Acta 66 (15A), p. A91 - A91 (2002)
Tegen, I.; Harrison, S. P.; Kohfeld, K. E.; Mctainsh, G.: Modeling the role of mineral aerosols in global climate cycles. EOS, Transactions of the American Geophysical Union 83 (36), pp. 395 - 400 (2002)
Harrison, S. P.; Kohfeld, K. E.; Roelandt, C.; Claquin, T.: The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews 54 (1-3), pp. 43 - 80 (2001)
Kohfeld, K. E.; Anderson, R. F.; Lynch-Stieglitz, J.: Carbon isotopic disequilibrium in polar planktonic Foraminifera and its impact on modern and Last Glacial Maximum reconstructions. Paleoceanography 15 (1), pp. 53 - 64 (2000)
Kohfeld, K. E.; Harrison, S. P.: How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quaternary Science Reviews 19 (1-5), pp. 321 - 346 (2000)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Tropical forests are continuously being fragmented and damaged by human influences. Using remote sensing data and cutting-edge data analysis methods, researchers can now show for the first time that the impact of this damage is greater than previously estimated.
Plant observations collected with plant identification apps such as Flora Incognita allow statements about the developmental stages of plants - both on a small scale and across Europe.
We have gained a new external member: Prof. Dr. Christian Wirth has been appointed by the Senate of the Max Planck Society as External Scientific Member. As a former group leader and later fellow at the institute, Prof. Wirth initiated and supported the development of the TRY database, the world's largest collection on plant traits.
A new study shows a natural solution to mitigate the effects of climate change such as extreme weather events. Researchers found that a diverse plant community acts as a buffer against fluctuations in soil temperature. This buffer, in turn, can have a decisive influence on important ecosystem processes.
The Deutsche Forschungsgemeinschaft (DFG) is to fund a Research Unit in the Jena Experiment for a further four years with around five million euros. The new focus is on the stabilising effect of biodiversity against extreme climate events such as heat, frost or heavy rainfall.
With a kick-off event on January 12, 2023, Friedrich Schiller University Jena, the Max Planck Institute for Biogeochemistry and the German Aerospace Center jointly opened the ELLIS Unit Jena. Machine learning and artificial intelligence are being used to help address global environmental crises.
A new study reveals that surprisingly small increases in atmospheric CO2 lead to detectable effects on ecosystem functioning. Using simulations of the land surface model developed at the Max Planck Institute for Biogeochemistry, an international team of scientists finds that enhanced CO2 first affects entities of the carbon cycle such as vegetation productivity and the extension of leaf area.