Aparecido, L. M. T.; Santos, J. d.; Higuchi, N.; Kunert, N.: Relevance of wood anatomy and size of Amazonian trees in the determination and allometry of sapwood area. Acta Amazonica 49 (1), pp. 1 - 10 (2019)
Muhr, J.; Trumbore, S. E.; Higuchi, N.; Kunert, N.: Living on borrowed time – Amazonian trees use decade‐old storage carbon to survive for months after complete stem girdling. New Phytologist 220 (1), pp. 111 - 120 (2018)
Kunert, N.; Aparecido, L. M. T.; Wolff, S.; Higuchi, N.; Santos, J. d.; de Araujo, A. C.; Trumbore, S. E.: A revised hydrological model for the Central Amazon: The importance of emergent canopy trees in the forest water budget. Agricultural and Forest Meteorology 239, pp. 47 - 57 (2017)
Hilman, B.; Muhr, J.; Trumbore, S. E.; Kunert, N.; Carbone, M. S.; Yuval, P.; Wright, S. J.; Moreno, G.; Pérez‑Priego, O.; Migliavacca, M.et al.; Carrara, A.; Grünzweig, J. M.; Osem, Y.; Weiner, T.; Angert, A.: Comparison of CO2 and O2 fluxes demonstrate retention of respired CO2 in tree stems from a range of tree species. Biogeosciences 16 (1), pp. 177 - 191 (2017)
Kunert, N.: Curios relationship revealed by looking at long term data sets—The geometry and allometric scaling of diel xylem sap flux in tropical trees. Journal of Plant Physiology 205, pp. 80 - 83 (2016)
Aparecido, L. M. T.; dos Santos, J.; Higuchi, N.; Kunert, N.: Ecological applications of differences in the hydraulic efficiency of palms and broad leaved trees. Trees 29, pp. 1431 - 1445 (2015)
Da Silva, F.; Suwa, R.; Kajimoto, T.; Ishizuka, M.; Higuchi, N.; Kunert, N.: Allometric equations for estimating biomass of Euterpe precatoria, the most abundant palm species in the Amazon. Forests 6 (2), pp. 450 - 463 (2015)
Kunert, N.; Aparecido, L. M. T.; Barros, P.; Higuchi, N.: Modeling potential impacts of planting palms or tree in small holder fruit plantations on ecohydrological processes in the Central Amazon. Forests 6 (8), pp. 2530 - 2544 (2015)
Kunert, N.; Aparecido, L. M. T.; dos Santos, J.; Higuchi, N.; Trumbore, S. E.: Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agricultural and Forest Meteorology 213, pp. 183 - 192 (2015)
Schwendenmann, L.; Pendall, E.; Sanchez-Bragado, R.; Kunert, N.; Hölscher, D.: Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology 8 (1), pp. 1 - 12 (2015)
Trumbore, S. E.; Angert, A.; Kunert, N.; Muhr, J.; Chambers, J. Q.: What's the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes. New Phytologist 197 (2), pp. 353 - 355 (2013)
Kunert, N.; Mercado Cardenas, A.: Effects of xylem water transport on CO2 efflux of woody tissue in a tropical tree, Amazonas State. Hoehnea 39 (1), pp. 139 - 144 (2012)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Tropical forests are continuously being fragmented and damaged by human influences. Using remote sensing data and cutting-edge data analysis methods, researchers can now show for the first time that the impact of this damage is greater than previously estimated.
Plant observations collected with plant identification apps such as Flora Incognita allow statements about the developmental stages of plants - both on a small scale and across Europe.
We have gained a new external member: Prof. Dr. Christian Wirth has been appointed by the Senate of the Max Planck Society as External Scientific Member. As a former group leader and later fellow at the institute, Prof. Wirth initiated and supported the development of the TRY database, the world's largest collection on plant traits.
A new study shows a natural solution to mitigate the effects of climate change such as extreme weather events. Researchers found that a diverse plant community acts as a buffer against fluctuations in soil temperature. This buffer, in turn, can have a decisive influence on important ecosystem processes.
The Deutsche Forschungsgemeinschaft (DFG) is to fund a Research Unit in the Jena Experiment for a further four years with around five million euros. The new focus is on the stabilising effect of biodiversity against extreme climate events such as heat, frost or heavy rainfall.
With a kick-off event on January 12, 2023, Friedrich Schiller University Jena, the Max Planck Institute for Biogeochemistry and the German Aerospace Center jointly opened the ELLIS Unit Jena. Machine learning and artificial intelligence are being used to help address global environmental crises.
A new study reveals that surprisingly small increases in atmospheric CO2 lead to detectable effects on ecosystem functioning. Using simulations of the land surface model developed at the Max Planck Institute for Biogeochemistry, an international team of scientists finds that enhanced CO2 first affects entities of the carbon cycle such as vegetation productivity and the extension of leaf area.