Tegen, I.; Werner, M.; Harrison, S. P.; Kohfeld, K. E.: Reply to comment by N. M. Mahowald et al. on "Relative importance of climate and land use in determining present and future global soil dust emission''. Geophysical Research Letters 31 (24), p. L24106 (2004)
Bopp, L.; Kohfeld, K. E.; Le Quéré, C.; Aumont, O.: Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18 (2), p. 1046 (2003)
Engelstädter, S.; Kohfeld, K. E.; Tegen, I.; Harrison, S. P.: Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data. Geophysical Research Letters 30 (6), p. 1294 (2003)
Frechen, M.; Oches, E. A.; Kohfeld, K. E.: Loess in Europe - mass accumulation rates during the Last Glacial Period. Quaternary Science Reviews 22 (18-19), pp. 1835 - 1857 (2003)
Kohfeld, K. E.; Harrison, S. P.: Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau. Quaternary Science Reviews 22 (18-19), pp. 1859 - 1878 (2003)
Bopp, L.; Kohfeld, K. E.; Le Quéré, C.; Aumont, O.: Dust impact on marine biota and atmospheric CO2 in glacial periods. Geochimica et Cosmochimica Acta 66 (15A), p. A91 - A91 (2002)
Tegen, I.; Harrison, S. P.; Kohfeld, K. E.; Mctainsh, G.: Modeling the role of mineral aerosols in global climate cycles. EOS, Transactions of the American Geophysical Union 83 (36), pp. 395 - 400 (2002)
Harrison, S. P.; Kohfeld, K. E.; Roelandt, C.; Claquin, T.: The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews 54 (1-3), pp. 43 - 80 (2001)
Kohfeld, K. E.; Anderson, R. F.; Lynch-Stieglitz, J.: Carbon isotopic disequilibrium in polar planktonic Foraminifera and its impact on modern and Last Glacial Maximum reconstructions. Paleoceanography 15 (1), pp. 53 - 64 (2000)
Kohfeld, K. E.; Harrison, S. P.: How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quaternary Science Reviews 19 (1-5), pp. 321 - 346 (2000)
The Germany-wide citizen science project GartenDiv will research plant diversity in Germany's gardens for the first time. A one-year pilot project will provide an overview of which plants thrive in gardens across the country.
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
The new research project "PollenNet" aims to use artificial intelligence to accurately predict the spread of pollen. In order to improve allergy prevention, experts are bringing together the latest interdisciplinary findings from a wide range of fields.
If rivers overflow their banks, the consequences can be devastating. Using methods of explainable machine learning, researchers at the Helmholtz Centre for Environmental Research (UFZ) have shown that floods are more extreme when several factors are involved in their development.
Plant observations collected with plant identification apps such as Flora Incognita allow statements about the developmental stages of plants - both on a small scale and across Europe.
We have gained a new external member: Prof. Dr. Christian Wirth has been appointed by the Senate of the Max Planck Society as External Scientific Member. As a former group leader and later fellow at the institute, Prof. Wirth initiated and supported the development of the TRY database, the world's largest collection on plant traits.
A new study shows a natural solution to mitigate the effects of climate change such as extreme weather events. Researchers found that a diverse plant community acts as a buffer against fluctuations in soil temperature. This buffer, in turn, can have a decisive influence on important ecosystem processes.