Tegen, I.; Werner, M.; Harrison, S. P.; Kohfeld, K. E.: Reply to comment by N. M. Mahowald et al. on "Relative importance of climate and land use in determining present and future global soil dust emission''. Geophysical Research Letters 31 (24), p. L24106 (2004)
Bopp, L.; Kohfeld, K. E.; Le Quéré, C.; Aumont, O.: Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18 (2), p. 1046 (2003)
Engelstädter, S.; Kohfeld, K. E.; Tegen, I.; Harrison, S. P.: Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data. Geophysical Research Letters 30 (6), p. 1294 (2003)
Frechen, M.; Oches, E. A.; Kohfeld, K. E.: Loess in Europe - mass accumulation rates during the Last Glacial Period. Quaternary Science Reviews 22 (18-19), pp. 1835 - 1857 (2003)
Kohfeld, K. E.; Harrison, S. P.: Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau. Quaternary Science Reviews 22 (18-19), pp. 1859 - 1878 (2003)
Bopp, L.; Kohfeld, K. E.; Le Quéré, C.; Aumont, O.: Dust impact on marine biota and atmospheric CO2 in glacial periods. Geochimica et Cosmochimica Acta 66 (15A), p. A91 - A91 (2002)
Tegen, I.; Harrison, S. P.; Kohfeld, K. E.; Mctainsh, G.: Modeling the role of mineral aerosols in global climate cycles. EOS, Transactions of the American Geophysical Union 83 (36), pp. 395 - 400 (2002)
Harrison, S. P.; Kohfeld, K. E.; Roelandt, C.; Claquin, T.: The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews 54 (1-3), pp. 43 - 80 (2001)
Kohfeld, K. E.; Anderson, R. F.; Lynch-Stieglitz, J.: Carbon isotopic disequilibrium in polar planktonic Foraminifera and its impact on modern and Last Glacial Maximum reconstructions. Paleoceanography 15 (1), pp. 53 - 64 (2000)
Kohfeld, K. E.; Harrison, S. P.: How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quaternary Science Reviews 19 (1-5), pp. 321 - 346 (2000)
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
In the annual ranking of the world's most cited and thus most influential scientists, five authors from our institute are once again represented in 2024.
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.
The Chapter of the Order has elected the writer, philosopher and filmmaker Alexander Kluge and the mathematician Gerd Faltings as domestic members of the Order and the geologist Susan Trumbore and the literary scholar Stephen Greenblatt as foreign members.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.