Buchmann, N.; Bonal, D.; Barigah, T. S.; Guehl, J. M.; Ehleringer, J. R.: Insights into the carbon dynamics of tropical primary rainforests using stable carbon isotope analyses. In: Ecology and management of a neotropical rainforest: lessons drawn from Paracou, a long-term exeperimental research site in French Guiana, pp. 95 - 113 (Eds. Gourlet-Fleury, S.; Guehl, J. M.; Laroussinie, O.). Elsevier, Paris (2004)
Janssens, I. A.; Dore, S.; Epron, D.; Lankreijer, H.; Buchmann, N.; Longdoz, B.; Brossaud, J.; Montagnani, L.: Climatic influences on seasonal and spatial differences in soil CO" efflux. In: Fluxes of Carbon, Water and Energy of European Forests, Vol. 163, pp. 233 - 253 (Ed. Valentini, R.). Springer, Heidelberg (2003)
Lankreijer, H.; Janssens, I. A.; Buchmann, N.; Longdoz, B.; Epron, D.; Dore, S.: Measurement of soil respiration. In: Fluxes of Carbon, Water and Energy of European Forests, Vol. 163, pp. 37 - 54 (Ed. Valentini, R.). Springer, Heidelberg (2003)
Hooper, D.; Buchmann, N.; Degrange, V.; Díaz, S. M.; Gessner, M. O.; Grime, P.; Hulot, F.; Mermillod-Blondin, F.; Van Peer, L.; Roy, J.et al.; Symstad, A.; Solan, M.; Spehn, E.: Species diversity, functional diversity and ecosystem functioning. In: Biodiversity and ecosystems functioning: a current synthesis, pp. 195 - 208 (Eds. Loreau, M.; Naeem, S.; Inchausti, P.). Oxford University Press, Oxford (2002)
Krause, R.; Buchmann, N.; Churkina, G.; Freibauer, A.: Development of a database for climate research. In: Environmental communication in the information society: proceedings of the 16th International Conference Informatics for Environmental Protection, September 25 - 27, 2002, University of Technology, Vienna, Austria, Vol. 2, pp. 643 - 646 (Eds. Pillmann, W.; Tochtermann, K.). International Society for Envirnonmental Protection, Vienna, Austria (2002)
Wichura, B.; Buchmann, N.; Foken, T.: Carbon dioxide exchange characteristics above a spruce forest. In: 25th Conference on Agricultural and Forest Meteorology: 20 - 24 May 2002, Norfolk, Virginia, pp. 63 - 64. American Meteorological Society, Boston (2002)
Buchmann, N.; Kaplan, J. O.: Carbon isotope discrimination of terrestrial ecosystems - how well do observed and modeled results match? In: Global biogeochemical cycles in the climate system, pp. 253 - 266 (Eds. Schulze, E.-D.; Heimann, M.; Harrison, S. P.; Holland, E.; Lloyd, J. et al.). Academic Press, San Diego (2001)
Gebauer, G.; Zeller, B.; Schmidt, G.; May, C.; Buchmann, N.; Colin-Belgrand, M.; Dambrine, E.; Martin, F.; Schulze, E.-D.; Bottner, P.: The fate of N-15-labelled nitrogen inputs to coniferous and broadleaf forests. In: Carbon and Nitrogen Cycling in European Forest Ecosystems, Vol. 142, pp. 144 - 170 (2000)
Matteucci, G.; Dore, S.; Stivanello, S.; Rebmann, C.; Buchmann, N.: Soil respiration in beech and spruce forests in Europe: Trends, controlling factors, annual budgets and implications for the ecosystem carbon balance. In: Carbon and Nitrogen Cycling in European Forest Ecosystems, Vol. 142, pp. 217 - 236 (Ed. Schulze, E.-D.). Springer, Berlin (2000)
Wichura, B.; Buchmann, N.; Foken, T.: Fluxes of the stable carbon isotope 13C above a spruce forest measured by hyperbolic relaxed eddy accumulation method. In: 14th Symposium on Boundary Layers and Turbulence. 14th Symposium on Boundary Layers and Turbulence, Boston. (2000)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.