Ullmann, I.; Lange, O. L.; Ziegler, H.; Ehleringer, J. R.; Schulze, E. D.; Cowan, I. R.: Diurnal courses of leaf conductance and transpiration of mistletoes and their hosts in Central Australia. Oecologia 67 (4), S. 577 - 587 (1985)
Beck, E.; Schlüter, I.; Scheibe, R.; Schulze, E. D.: Growth rates and population rejuvenation of East African giant groundsels (Dendrosenecia keniodendron). Flora 175 (4), S. 243 - 248 (1984)
Beck, E.; Schulze, E. D.; Senser, M.; Scheibe, R.: Equilibrium freezing of leaf water and extracellular ice formation in afroalpine "giant rosette" plants. Planta 162 (3), S. 276 - 282 (1984)
Brinckmann, E.; Tyerman, S. D.; Steudle, E.; Schulze, E. D.: The effect of different growing conditions on water relations parameters of leaf epidermal cells of Tradescantia virginiana L. Oecologia 62 (1), S. 110 - 117 (1984)
Schulze, E. D.; Bloom, A.: Relationship between mineral nitrogen influx and transpiration in radish and tomato. Plant Physiology 76 (3), S. 827 - 828 (1984)
Schulze, E. D.; Ehleringer, J. R.: The effect of nitrogen supply on growth and water-use efficiency of sylem tapping mistletoes. Planta 162 (3), S. 268 - 275 (1984)
Schulze, E. D.; Reif, A.; Küppers, M.: Die pflanzenökologische Bedeutung und Bewertung von Hecken. Berichte der ANL / Hrsg.: Bayerische Akademie für Naturschutz und Landschaftspflege (ANL) Beiheft 3 (Teil 1), S. 1 - 102 (1984)
Schulze, E. D.; Turner, N. C.; Glatzel, G.: Carbon, water and nutrient relations of two mistletoes and their hosts: A hypothesis. Plant, Cell and Environment 7 (5), S. 293 - 299 (1984)
Turner, N. C.; Schulze, E. D.; Gollan, T.: Responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content I. Species comparisons at high soil water contents. Oecologia 63 (3), S. 338 - 342 (1984)
Turner, N. C.; Spurway, R. A.; Schulze, E. D.: Comparison of water potentials measured by in situ psychrometry and pressure chamber in morphologically different species. Plant Physiology 74 (2), S. 316 - 319 (1984)
Nagarajah, S.; Schulze, E. D.: Responses of Vigna unguiculata (L.) Walp. to atmospheric and soil drought. Australian Journal of Plant Physiology 10 (5), S. 385 - 394 (1983)
Schulze, E. D.: Photosynthetic CO2 uptake and whole plant growth as related to plant water relations. Berichte der Deutschen Botanischen Gesellschaft 96 (1), S. 391 - 402 (1983)
Schulze, E. D.; Hall, A. E.; Lange, O. L.; Walz, H.: A portable steady-state porometer for measuring the carbon dioxide and water vapour exchanges of leaves under natural conditions. Oecologia 53 (2), S. 141 - 145 (1983)
Schulze, E. D.; Schilling, K.; Nagarajah, S.: Carbohydrate partitioning in relation to whole plant production and water use of Vigna unguiculata (L.) Walp. Oecologia 58 (2), S. 169 - 177 (1983)
Küppers, M.; Hall, A. E.; Schulze, E. D.: Effects of day-to-day changes in root temperature on leaf conductance to water vapour and CO2 assimilation rates of Vigna unguiculata L. Walp. Oecologia 52 (1), S. 116 - 120 (1982)
Benecke, U.; Schulze, E. D.; Matyssek, R.; Havranek, W. M.: Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50, S. 54 - 61 (1981)
Tomos, A. D.; Steudle, E.; Zimmermann, U.; Schulze, E. D.: Water relations of leaf epidermal cells of Tradescantia virginiana. Plant Physiology 68 (5), S. 1135 - 1143 (1981)
Farquhar, G. D.; Schulze, E. D.; Küppers, M.: Responses to humidity by stomata of Nicotiana glauca L. and Corylus avellana L. are consistent with the optimization of carbon dioxide uptake with respect to water loss. Australian Journal of Plant Physiology 7 (3), S. 315 - 327 (1980)
Hall, A. E.; Schulze, E. D.: Drought effects on transpiration and leaf water status of cowpea in controlled environments. Australian Journal of Plant Physiology 7 (2), S. 141 - 147 (1980)
Das internationale Cabo-Verde-Atmosphären-Observatorium (CVAO) wird weiter ausgebaut: Der Präsident der Republik Cabo Verde José Maria Neves und Bundespräsident Frank-Walter Steinmeier legten am Donnerstag den Grundstein für ein neues Laborgebäude auf São Vicente, einer der Kapverdischen Inseln vor Afrika. Das Max-Planck-Institut für Biogeochemie war am Aufbau der Station beteiligt und führt seitdem am CVAO Langzeitmessungen u.a. der Treibhausgase Methan, Kohlendioxid und Lachgas durch.
A new study shows that future ecosystem functioning will increasingly depend on water availability. Using recent simulations from climate models, an international team of scientists found several “hot spot regions” where increasing water limitation strongly affects ecosystems. These include Central Europe, the Amazon, and western Russia.
You can't see them with the naked eye, but our forest ground is littered with microorganisms. They decompose falling leaves, thereby improving soil quality and counteracting climate change. But how do these single-celled organisms coordinate their tasks? An international research team has been looking into this little-understood process. The results of the study were recently published in Scientific Reports.
Scientists have succeeded in detecting changes in carbon dioxide emissions from fossil fuels much faster than before. Using a new method, they combined atmospheric measurements of carbon dioxide (CO2) and oxygen (O2) from the north coast of the United Kingdom. The study, with the participation of the Max Planck Institute for Biogeochemistry, was published Apr. 22 in Science Advances.
International researchers found a pattern of extreme climate conditions leading to forest dieback. To do this, the team had collected worldwide records of climate-related tree and forest dieback events over the past nearly five decades. The results, recently published in Nature Communications, reveal an ominous scenario for forests in the context of ongoing global warming.
International forest experts analyzed major tree and forest dieback events that occurred globally in the last decades in response to climate extremes. To their surprise many forests were strongly affected that were not considered threatened based on current scientific understanding. The study, led by the MPI-BGC and published in Annual Reviews in Plant Biology, underscores also that further tree and forest dieback is likely to occur.
An international research team succeeded in identifying global factors that explain the diversity of form and function in plants. Led by the University of Zurich, the Max Planck Institute for Biogeochemistry in Jena and the University of Leipzig, the researchers collected and analyzed plant data from around the world.
Precisely how does a forest system and the individual plants within it react to extreme drought? Understanding the processes involved is crucial to making forests more resilient in the increasingly dry climate that will result from climate change, and also important for refining climate models. A research team led by Prof. Dr. Christiane Werner from the University of Freiburg has conducted the most extensive experiment to date into this subject using stable isotopes to trace flows of water and carbon through a forest.
After fossil carbon dioxide emissions fell significantly on average globally in 2020, they are approaching pre-Corona pandemic levels again this year. This is the conclusion of the international Global Carbon Project. The project is now publishing its preliminary report in the journal Earth System Science Data.
The increasing amount of greenhouse gases in the atmosphere is causing our climate to warm at an alarming rate. Information is vital for societies who must decide on pathways to climate neutrality. The European ICOS research structure, including Max-Planck Institute for Biogeochemistry, provides this information, as described in a recent article.
Ecosystems provide multiple services for humans. However, these services depend on basic ecosystem functions which are shaped by natural conditions like climate and species composition, and human interventions. A large international research team, led by the Max Planck Institute for Biogeochemistry, Jena, identified three key indicators that together summarize the integrative function of terrestrial ecosystems.
Mathias Göckede und Martin Heimann erhalten gemeinsam mit Kooperationspartner ein prestigereiches ERC Synergy Grant für klimarelevante Permafrost-Forschung. Ihr erfolgreich evaluiertes Projekt „Quantify disturbance impacts on feedbacks between Arctic permafrost and global climate – Q-ARCTIC” wird über 6 Jahre mit insgesamt 10 Mio. € gefördert.