Wang, S.; Yang, H.; Koirala, S.; Forkel, M.; Reichstein, M.; Carvalhais, N.: Understanding disturbance regimes from patterns in modeled forest biomass. Journal of Advances in Modeling Earth Systems 16 (6), e2023MS004099 (2024)
Fan, N.; Santoro, M.; Besnard, S.; Cartus, O.; Koirala, S.; Carvalhais, N.: Implications of the steady-state assumption for the global vegetation carbon turnover. Environmental Research Letters 18 (10), 104036 (2023)
Pacheco-Labrador, J.; de Bello, F.; Migliavacca, M.; Ma, X.; Carvalhais, N.; Wirth, C.: A generalizable normalization for assessing plant functional diversity metrics across scales from remote sensing. Methods in Ecology and Evolution 14 (8), pp. 2123 - 2136 (2023)
Yang, H.; Munson, S. M.; Huntingford, C.; Carvalhais, N.; Knapp, A. K.; Li, X.; Peñuelas, J.; Zscheischler, J.; Chen, A.: The detection and attribution of extreme reductions in vegetation growth across the global land surface. Global Change Biology 29 (8), pp. 2351 - 2362 (2023)
Zhang, W.; Jung, M.; Migliavacca, M.; Poyatos, R.; Miralles, D. G.; El-Madany, T. S.; Galvagno, M.; Carrara, A.; Arriga, N.; Ibrom, A.et al.; Mammarella, I.; Papale, D.; Cleverly, J. R.; Liddell, M.; Wohlfahrt, G.; Markwitz, C.; Mauder, M.; Paul-Limoges, E.; Schmidt, M.; Wolf, S.; Brümmer, C.; Arain, M. A.; Fares, S.; Kato, T.; Ardö, J.; Oechel, W.; Hanson, C.; Korkiakoski, M.; Biraud, S.; Steinbrecher, R.; Billesbach, D.; Montagnani, L.; Woodgate, W.; Shao, C.; Carvalhais, N.; Reichstein, M.; Nelson, J. A.: The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation. Agricultural and Forest Meteorology 330, 109305 (2023)
Fan, N.; Reichstein, M.; Koirala, S.; Ahrens, B.; Mahecha , M. D.; Carvalhais, N.: Global apparent temperature sensitivity of terrestrial carbon turnover modulated by hydrometeorological factors. Nature Geoscience 15, pp. 989 - 994 (2022)
Bao, S.; Ibrom, A.; Wohlfahrt, G.; Koirala, S.; Migliavacca, M.; Zhang, Q.; Carvalhais, N.: Narrow but robust advantages in two-big-leaf light use efficiency models over big-leaf light use efficiency models at ecosystem level. Agricultural and Forest Meteorology 326, 109185 (2022)
Pacheco-Labrador, J.; Migliavacca, M.; Ma, X.; Mahecha, M. D.; Carvalhais, N.; Weber, U.; Benavides, R.; Bouriaud, O.; Barnoaie, I.; Coomesl, D. A.et al.; Bohn, F. J.; Kraemer, G.; Heide, U.; Huth, A.; Wirth, C.: Challenging the link between functional and spectral diversity with radiative transfer modeling and data. Remote Sensing of Environment 280, 113170 (2022)
Anderegg, W. R. L.; Wu, C.; Acil, N.; Carvalhais, N.; Pugh, T. A. M.; Sadler, J. P.; Seidl, R.: A climate risk analysis of Earth’s forests in the 21st century. Science 377 (6610), pp. 1099 - 1103 (2022)
Santoro, M.; Cartus, O.; Wegmüller, U.; Besnard, S.; Carvalhais, N.; Araza, A.; Herold, M.; Liang, J.; Cavlovic, J.; Engdahl, M. E.: Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure. Remote Sensing of Environment 279, 113114 (2022)
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
The Chapter of the Order has elected the writer, philosopher and filmmaker Alexander Kluge and the mathematician Gerd Faltings as domestic members of the Order and the geologist Susan Trumbore and the literary scholar Stephen Greenblatt as foreign members.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
Nitrogen fertilizers and nitrogen oxides from fossil fuels pollute the air and drinking water, lead to the over-fertilization of water bodies and terrestrial ecosystems, reduce biodiversity and damage the ozone layer. On balance, however, they have a cooling effect on the climate.
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
On June 24, Prof. Dr. Henrik Hartmann, head of the Julius Kühn Institute for Forest Protection and former group leader at the Max Planck Institute for Biogeochemistry, received an important award for his scientific achievements in the field of forestry. Our warmest congratulations!