Roscher, C.; Kutsch, W. L.; Kolle, O.; Ziegler, W.; Schulze, E. D.: Adjustment to the light environment in small-statured forbs as a strategy for complementary resource use in mixtures of grassland species. Annals of Botany 107 (6), pp. 965 - 979 (2011)
Roscher, C.; Scherer-Lorenzen, M.; Schumacher, J.; Temperton, V. M.; Buchmann, N.; Schulze, E. D.: Plant resource-use characteristics as predictors for species contribution to community biomass in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics 13 (1), pp. 1 - 13 (2011)
Roscher, C.; Schmid, B.; Buchmann, N.; Weigelt, A.; Schulze, E.-D.: Legume species differ in the responses of their functional traits to plant diversity. Oecologia 165 (2), pp. 437 - 452 (2011)
Roscher, C.; Thein, S.; Weigelt, A.; Temperton, V. M.; Buchmann, N.; Schulze, E. D.: N2 fixation and performance of 12 legume species in a 6-year grassland biodiversity experiment. Plant and Soil 341 (1-2), pp. 333 - 348 (2011)
Schrumpf, M.; Schulze, E. D.; Kaiser, K.; Schumacher, J.: How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences 8 (5), pp. 1193 - 1212 (2011)
Schulze, E. D.; Luyssaert, S.; Ciais, P.: Response to 'The European nitrogen cycle: response to Schulze et al, Global Change Biology (2010) 16, pp. 1451-1469'. Global Change Biology 17 (8), pp. 2758 - 2761 (2011)
Von Lüpke, N.; Hardtke, A.; Lück, M.; Hessenmöller, D.; Ammer, C.; Schulze, E.-D.: Bestandesvorrat, Baumartenvielfalt und Struktur kleinparzellierter Privatwälder im Hainich. Forstarchiv 82, pp. 202 - 215 (2011)
Wäldchen, J.; Schulze, E. D.; Mund, M.; Winkler, B.: Der Einfluss politischer, rechtlicher und wirtschaftlicher Rahmenbedingungen des 19. Jahrhunderts auf die Bewirtschaftung der Wälder im Hainich-Dün-Gebiet (Nordthüringen). Forstarchiv 82, pp. 35 - 47 (2011)
Bryuhanova, M.; Vaganov, E. A.; Pp, S.; Schulze, E. D.: Seasonal changes of 13C/12C, anatomical structure, and wood density in tree rings of sycamore maple, common beech, and European Ash. Lesovedenie 5, pp. 3 - 11 (2010)
Ciais, P.; Canadell, J. G.; Luyssaert, S.; Chevallier, F.; Shvidenko, A.; Poussi, Z.; Jonas, M.; Peylin, P.; King, A. W.; Schulze, E. D.et al.; Piao, S. L.; Rödenbeck, C.; Peters, W.; Breon, F. M.: Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting? Current Opinion in Environmental Sustainability 2 (4), pp. 225 - 230 (2010)
Kutsch, W. L.; Aubinet, M.; Buchmann, N.; Smith, P.; Osborne, B.; Eugster, W.; Wattenbach, M.; Schrumpf, M.; Schulze, E. D.; Tomelleri, E.et al.; Ceschia, E.; Bernhofer, C.; Béziat, P.; Carrara, A.; Di Tommasi, P.; Grünwald, T.; Jones, M.; Magliulo, V.; Marloie, O.; Moureaux, C.; Olioso, A.; Sanz, M. J.; Saunders, M.; Søgaard, H.; Ziegler, W.: The net biome production of full crop rotations in Europe. Agriculture, Ecosystems & Environment 139 (3), pp. 336 - 345 (2010)
Kutsch, W. L.; Persson, T.; Schrumpf, M.; Moyano, F. E.; Mund, M.; Andersson, S.; Schulze, E.-D.: Heterotrophic soil respiration and soil carbon dynamics in the deciduous Hainich forest obtained by three approaches. Biogeochemistry 100 (1-3), pp. 167 - 183 (2010)
Luyssaert, S.; Ciais, P.; Piao, S. L.; Schulze, E.-D.; Jung, M.; Zaehle, S.; Schelhaas, M. J.; Reichstein, M.; Churkina, G.; Papale, D.et al.; Abril, G.; Beer, C.; Grace, J.; Loustau, D.; Matteucci, G.; Magnani, F.; Nabuurs, G. J.; Verbeeck, H.; Sulkava, M.; Van Der Werf, G. R.; Janssens, I.; Team, C. S.: The European carbon balance. Part 3: forests. Global Change Biology 16 (5), pp. 1429 - 1450 (2010)
Mund, M.; Kutsch, W. L.; Wirth, C.; Kahl, T.; Knohl, A.; Skomarkova, M. V.; Schulze, E.-D.: The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiology 30 (6), pp. 689 - 704 (2010)
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Plant observations collected with plant identification apps such as Flora Incognita allow statements about the developmental stages of plants - both on a small scale and across Europe.
We have gained a new external member: Prof. Dr. Christian Wirth has been appointed by the Senate of the Max Planck Society as External Scientific Member. As a former group leader and later fellow at the institute, Prof. Wirth initiated and supported the development of the TRY database, the world's largest collection on plant traits.
A new study shows a natural solution to mitigate the effects of climate change such as extreme weather events. Researchers found that a diverse plant community acts as a buffer against fluctuations in soil temperature. This buffer, in turn, can have a decisive influence on important ecosystem processes.
The plant identification app Flora Incognita receives this year's Sonja Bernadotte Award for its importance in nature education for all age groups and its high scientific standards and usefulness.
The Deutsche Forschungsgemeinschaft (DFG) is to fund a Research Unit in the Jena Experiment for a further four years with around five million euros. The new focus is on the stabilising effect of biodiversity against extreme climate events such as heat, frost or heavy rainfall.
Germany's most popular plant identification app "Flora Incognita" has been further upgraded by a new artificial intelligence. This triples the number of plant species that can be identified up to 16,000. In addition, the app is now available in 20 different languages and also in offline mode.
With a kick-off event on January 12, 2023, Friedrich Schiller University Jena, the Max Planck Institute for Biogeochemistry and the German Aerospace Center jointly opened the ELLIS Unit Jena. Machine learning and artificial intelligence are being used to help address global environmental crises.
Mobile apps like Flora Incognita that allow automated identification of wild plants cannot only identify plant species, but also uncover large scale ecological patterns. These patterns are surprisingly similar to the ones derived from long-term inventory data of the German flora, even though they have been acquired over much shorter time periods and are influenced by user behaviour.