Mahecha, M. D.; Gans, F.; Brandt, G.; Christiansen, R.; Cornell, S. E.; Fomferra, N.; Kraemer, G.; Peters, J.; Bodesheim, P.; Camps-Valls, G.et al.; Donges, J. F.; Dorigo, W.; Estupinan-Suarez, L. M.; Gutierrez-Velez, V. H.; Gutwin, M.; Jung, M.; Londoño, M. C.; Miralles, D. G.; Papastefanou, P.; Reichstein, M.: Earth system data cubes unravel global multivariate dynamics. Earth System Dynamics 11 (1), pp. 201 - 234 (2020)
García, Y. G.; Shadaydeh, M.; Mahecha, M. D.; Denzler, J.: Extreme anomaly event detection in biosphere using linear regression and a spatiotemporal MRF model. Natural Hazards 98 (3), pp. 849 - 867 (2019)
Babst, F.; Bodesheim, P.; Charney, N.; Friend, A. D.; Girardin, M. P.; Klesse, S.; Moore, D. J.P.; Seftigen, K.; Björklund, J.; Bouriaud, O.et al.; Dawson, A.; DeRose, R. J.; Dietze, M. C.; Eckes, A. H.; Enquist, B.; Frank, D. C.; Mahecha, M. D.; Poulter, B.; Record, S.; Trouet, V.; Turton, R. H.; Zhang, Z.; Evans, M. E.K.: When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews 197, pp. 1 - 20 (2018)
Flach, M.; Sippel, S.; Gans, F.; Bastos, A.; Brenning, A.; Reichstein, M.; Mahecha, M. D.: Contrasting biosphere responses to hydrometeorological extremes: revisiting the 2010 western Russian Heatwave. Biogeosciences 16, pp. 6067 - 6085 (2018)
Cremer, F.; Urbazaev, M.; Berger, C.; Mahecha, M. D.; Schmullius, C.; Thiel, a. C.: An image transform based on temporal decomposition. IEEE Geoscience and Remote Sensing Letters 15 (4), pp. 537 - 541 (2018)
Sippel, S.; El-Madany, T. S.; Migliavacca, M.; Mahecha, M. D.; Carrara, A.; Flach, M.; Kaminski, T.; Otto, F. E. L.; Thonicke, K.; Vossbeck, M.et al.; Reichstein, M.: Warm winter, wet spring, and an extreme response in ecosystem functioning on the Iberian Peninsula. Bulletin of the American Meteorological Society 99 (1), pp. S80 - S85 (2018)
von Buttlar, J.; Zscheischler, J.; Rammig, A.; Sippel, S.; Reichstein, M.; Knohl, A.; Jung, M.; Menzer, O.; Arain, M. A.; Buchmann, N.et al.; Cescatti, A.; Gianelle, D.; Kieley, G.; Law, B. E.; Magliulo, V.; Margolis, H.; McCaughey, H.; Merbold, L.; Migliavacca, M.; Montagnani, L.; Oechel, W.; Pavelka, M.; Peichl, M.; Rambal, S.; Raschi, A.; Scott, R. L.; Vaccari, F. P.; van Gorsel, E.; Varlagin, A.; Wohlfahrt, G.; Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones. Biogeosciences 15 (5), pp. 1293 - 1318 (2018)
Wu, X.; Liu, H.; Li, X.; Tian, Y.; Mahecha, M. D.: Responses of winter wheat yields to warming-mediated vernalization variations across temperate Europe. Frontiers in Ecology and Evolution 5, 126 (2017)
Sippel, S.; Forkel, M.; Rammig, A.; Thonicke, K.; Flach, M.; Heimann, M.; Otto, F. E. L.; Reichstein, M.; Mahecha, M. D.: Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems. Environmental Research Letters 12 (7), 075006 (2017)
Sierra, C.; Mahecha, M. D.; Poveda, G.; Álvarez-Dávila, E.; Gutierrez-Velez, V. H.; Reuf, B.; Feilhauer, H.; Anáya, J.; Armenteras, D.; Benavides, A. M.et al.; Buendiak, C.; Duque, Á.; Estupinan-Suarez, L. M.; González, C.; Gonzalez-Caro, S.; Jimenez, R.; Kraemer, G.; Londoño, M. C.; Orrego, S. A.; Posada, J. M.; Ruiz-Carrascalo, D.; Skowronek, S.: Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science and Policy 76, pp. 40 - 49 (2017)
Mathieu, P.-P.; Borgeaud, M.; Desnons Rast M., Y.-L.; Brockmann, C.; See, L.; Fritz, S.; Kapur, R.; Mahecha, M. D.; Benz, U.: The ESA's Earth Observation Open Science Program. IEEE Geoscience and Remote Sensing Magazine 5 (2), pp. 86 - 96 (2017)
Sippel, S.; Zscheischler, J.; Mahecha, M. D.; Orth, R.; Reichstein, M.; Vogel, M.; Seneviratne, S. I.: Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics. Earth System Dynamics 8 (2), pp. 387 - 403 (2017)
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Plant observations collected with plant identification apps such as Flora Incognita allow statements about the developmental stages of plants - both on a small scale and across Europe.
We have gained a new external member: Prof. Dr. Christian Wirth has been appointed by the Senate of the Max Planck Society as External Scientific Member. As a former group leader and later fellow at the institute, Prof. Wirth initiated and supported the development of the TRY database, the world's largest collection on plant traits.
A new study shows a natural solution to mitigate the effects of climate change such as extreme weather events. Researchers found that a diverse plant community acts as a buffer against fluctuations in soil temperature. This buffer, in turn, can have a decisive influence on important ecosystem processes.
The plant identification app Flora Incognita receives this year's Sonja Bernadotte Award for its importance in nature education for all age groups and its high scientific standards and usefulness.
The Deutsche Forschungsgemeinschaft (DFG) is to fund a Research Unit in the Jena Experiment for a further four years with around five million euros. The new focus is on the stabilising effect of biodiversity against extreme climate events such as heat, frost or heavy rainfall.
Germany's most popular plant identification app "Flora Incognita" has been further upgraded by a new artificial intelligence. This triples the number of plant species that can be identified up to 16,000. In addition, the app is now available in 20 different languages and also in offline mode.
With a kick-off event on January 12, 2023, Friedrich Schiller University Jena, the Max Planck Institute for Biogeochemistry and the German Aerospace Center jointly opened the ELLIS Unit Jena. Machine learning and artificial intelligence are being used to help address global environmental crises.
Mobile apps like Flora Incognita that allow automated identification of wild plants cannot only identify plant species, but also uncover large scale ecological patterns. These patterns are surprisingly similar to the ones derived from long-term inventory data of the German flora, even though they have been acquired over much shorter time periods and are influenced by user behaviour.