Boschetti, F.; Chen, H.; Thouret, V.; Nedelec, P.; Janssens-Maenhout, G.; Gerbig, C.: On the representation of IAGOS/MOZAIC vertical profiles in chemical transport models: contribution of different error sources in the example of carbon monoxide. Tellus, Series B - Chemical and Physical Meteorology 67 (1), 28292 (2015)
Filges, A.; Gerbig, C.; Chen, H.; Franke, H.; Klaus, C.; Jordan, A.: The IAGOS-core greenhouse gas package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO. Tellus, Series B - Chemical and Physical Meteorology 67 (1), 27989 (2015)
Beck, V.; Chen, H.; Gerbig, C.; Bergamaschi, P.; Bruhwiler, L.; Houweling, S.; Rockmann, T.; Kolle, O.; Steinbach, J.; Koch, T.et al.; Sapart, C. J.; van der Veen, C.; Frankenberg, C.; Andreae, M. O.; Artaxo, P.; Longo, K. M.; Wofsy, S. C.: Methane airborne measurements and comparison to global models during BARCA. Journal of Geophysical Research: Atmospheres 117, D15310 (2012)
Messerschmidt, J.; Chen, H.; Deutscher, N. M.; Gerbig, C.; Grupe, P.; Katrynski, K.; Koch, F. T.; Lavrič, J. V.; Notholt, J.; Rödenbeck, C.et al.; Ruhe, W.; Warneke, T.; Weinzierl, C.: Automated ground-based remote sensing measurements of greenhouse gases at the Białystok site in comparison with collocated in-situ measurements and model data. Atmospheric Chemistry and Physics 12, pp. 6741 - 6755 (2012)
Chen, H.; Winderlich, J.; Gerbig, C.; Höfer, A.; Rella, C. W.; Crosson, E. R.; Van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.et al.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.: High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmospheric Measurement Techniques 3 (2), pp. 375 - 386 (2010)
Chen, H.: Development of a high-accuracy continuous CO2/CH4/H2O analyzer for deployment on board a commercial airliner. Dissertation, 175 pp., Friedrich-Schiller-Universität, Jena (2010)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
Recently, representatives of the Brazilian Ministry of Research and foreign ambassadors visited the German-Brazilian research station ATTO. On site, Research Minister Pontes promised multi-million investments in Amazon research and also in ATTO. This is intended to further expand the infrastructure and strengthen research in Brazil.
For the German-Brazilian joint project ATTO (Amazon Tall Tower Observatory), the Max Planck Society on the German side will continue to ensure the continued operation of the research station in the Brazilian rainforest and research. In addition, the German Federal Ministry of Education and Research (BMBF) will fund the project with ATTO+ for another three years with around 5 million euros.