Zhang, X.; Xu, B.; Günther, F.; Witt, R.; Wang, M.; Xie, Y.; Zhao, H.; Li, J.; Gleixner, G.: Rapid northward shift of the Indian monsoon on the Tibetan Plateau at the end of the Little Ice Age. Journal of Geophysical Research: Atmospheres 122 (17), pp. 9262 - 9279 (2017)
Saini, J.; Günther, F.; Aichner, B.; Mischke, S.; Herzschuh, U.; Zhang, C.; Mäusbacher, R.; Gleixner, G.: Climate variability in the past ∼19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona. Quaternary Science Reviews 157 (1), pp. 129 - 140 (2017)
Witt, R.; Günther, F.; Lauterbach, S.; Kasper, T.; Mäusbacher, R.; Yao, T.; Gleixner, G.: Biogeochemical evidence for freshwater periods during the Last Glacial Maximum recorded in lake sediments from Nam Co, south-central Tibetan Plateau. Journal of Paleolimnology 55 (1), pp. 67 - 82 (2016)
Günther, F.; Thiele, A.; Gleixner, G.; Xu, B.; Yao, T.; Schouten, S.: Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: Implications for GDGT-based proxies in saline high mountain lakes. Organic Geochemistry 67, pp. 19 - 30 (2014)
Günther, F.; Aichner, B.; Siegwolf, R.; Xu, B.; Yao, T.; Gleixner, G.: A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau. Quaternary International 313-314, pp. 3 - 16 (2013)
Günther, F.; Mügler, I.; Mäusbacher, R.; Daut, G.; Leopold, K.; Gerstmann, U. C.; Xu, B.; Yao, T.; Gleixner, G.: Response of δ D values of sedimentary n-alkanes to variations in source water isotope signals and climate proxies at lake Nam Co, Tibetan Plateau. Quaternary International 236, pp. 82 - 90 (2011)
Günther, F.: Reconstruction of Asian monsoon using compound-specific isotope signals of aquatic and terrestrial biomarkers in Tibetan lake systems. Dissertation, Friedrich-Schiller-Universität, Jena (2013)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
Recently, representatives of the Brazilian Ministry of Research and foreign ambassadors visited the German-Brazilian research station ATTO. On site, Research Minister Pontes promised multi-million investments in Amazon research and also in ATTO. This is intended to further expand the infrastructure and strengthen research in Brazil.
For the German-Brazilian joint project ATTO (Amazon Tall Tower Observatory), the Max Planck Society on the German side will continue to ensure the continued operation of the research station in the Brazilian rainforest and research. In addition, the German Federal Ministry of Education and Research (BMBF) will fund the project with ATTO+ for another three years with around 5 million euros.