Aparecido, L. M. T.; Santos, J. d.; Higuchi, N.; Kunert, N.: Relevance of wood anatomy and size of Amazonian trees in the determination and allometry of sapwood area. Acta Amazonica 49 (1), pp. 1 - 10 (2019)
Muhr, J.; Trumbore, S. E.; Higuchi, N.; Kunert, N.: Living on borrowed time – Amazonian trees use decade‐old storage carbon to survive for months after complete stem girdling. New Phytologist 220 (1), pp. 111 - 120 (2018)
Kunert, N.; Aparecido, L. M. T.; Wolff, S.; Higuchi, N.; Santos, J. d.; de Araujo, A. C.; Trumbore, S. E.: A revised hydrological model for the Central Amazon: The importance of emergent canopy trees in the forest water budget. Agricultural and Forest Meteorology 239, pp. 47 - 57 (2017)
Hilman, B.; Muhr, J.; Trumbore, S. E.; Kunert, N.; Carbone, M. S.; Yuval, P.; Wright, S. J.; Moreno, G.; Pérez‑Priego, O.; Migliavacca, M.et al.; Carrara, A.; Grünzweig, J. M.; Osem, Y.; Weiner, T.; Angert, A.: Comparison of CO2 and O2 fluxes demonstrate retention of respired CO2 in tree stems from a range of tree species. Biogeosciences 16 (1), pp. 177 - 191 (2017)
Kunert, N.: Curios relationship revealed by looking at long term data sets—The geometry and allometric scaling of diel xylem sap flux in tropical trees. Journal of Plant Physiology 205, pp. 80 - 83 (2016)
Aparecido, L. M. T.; dos Santos, J.; Higuchi, N.; Kunert, N.: Ecological applications of differences in the hydraulic efficiency of palms and broad leaved trees. Trees 29, pp. 1431 - 1445 (2015)
Da Silva, F.; Suwa, R.; Kajimoto, T.; Ishizuka, M.; Higuchi, N.; Kunert, N.: Allometric equations for estimating biomass of Euterpe precatoria, the most abundant palm species in the Amazon. Forests 6 (2), pp. 450 - 463 (2015)
Kunert, N.; Aparecido, L. M. T.; Barros, P.; Higuchi, N.: Modeling potential impacts of planting palms or tree in small holder fruit plantations on ecohydrological processes in the Central Amazon. Forests 6 (8), pp. 2530 - 2544 (2015)
Kunert, N.; Aparecido, L. M. T.; dos Santos, J.; Higuchi, N.; Trumbore, S. E.: Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agricultural and Forest Meteorology 213, pp. 183 - 192 (2015)
Schwendenmann, L.; Pendall, E.; Sanchez-Bragado, R.; Kunert, N.; Hölscher, D.: Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology 8 (1), pp. 1 - 12 (2015)
Trumbore, S. E.; Angert, A.; Kunert, N.; Muhr, J.; Chambers, J. Q.: What's the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes. New Phytologist 197 (2), pp. 353 - 355 (2013)
Kunert, N.; Mercado Cardenas, A.: Effects of xylem water transport on CO2 efflux of woody tissue in a tropical tree, Amazonas State. Hoehnea 39 (1), pp. 139 - 144 (2012)
The BIOMASS satellite was successfully launched into orbit on 29 April 2025. The BIOMASS mission is designed to map and monitor global forests. It will map the structure of different forest types and provide data on above-ground biomass.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
Recently, representatives of the Brazilian Ministry of Research and foreign ambassadors visited the German-Brazilian research station ATTO. On site, Research Minister Pontes promised multi-million investments in Amazon research and also in ATTO. This is intended to further expand the infrastructure and strengthen research in Brazil.
For the German-Brazilian joint project ATTO (Amazon Tall Tower Observatory), the Max Planck Society on the German side will continue to ensure the continued operation of the research station in the Brazilian rainforest and research. In addition, the German Federal Ministry of Education and Research (BMBF) will fund the project with ATTO+ for another three years with around 5 million euros.