Oelmann, Y.; Buchmann, N.; Gleixner, G.; Habekost, M.; Roscher, C.; Rosenkranz, S.; Schulze, E.-D.; Steinbeiss, S.; Temperton, V. M.; Weigelt, A.et al.; Weisser, W. W.; Wilcke, W.: Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: Development in the first 5 years after establishment. Global Biogeochemical Cycles 25 (2), GB2014 (2011)
Seifert, A.-G.; Trumbore, S.; Xu, X. M.; Zhang, D. C.; Kothe, E.; Gleixner, G.: Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation. Geochimica et Cosmochimica Acta 75 (10), S. 2557 - 2570 (2011)
Kuhn, T. K.; Krull, E. S.; Bowater, A.; Grice, K.; Gleixner, G.: The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry 41 (2), S. 88 - 95 (2010)
Reiche, M.; Gleixner, G.; Kusel, K.: Effect of peat quality on microbial greenhouse gas formation in an acidic fen. Biogeosciences 7 (1), S. 187 - 198 (2010)
Sachse, D.; Gleixner, G.; Wilkes, H.; Kahmen, A.: Leaf wax n-alkane δ D values of field-grown barley reflect leaf water δD values at the time of leaf formation. Geochimica et Cosmochimica Acta 74 (23), S. 6741 - 6750 (2010)
Thoms, C.; Gattinger, A.; Jacob, M.; Thomas, F. M.; Gleixner, G.: Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology and Biochemistry 42 (9), S. 1558 - 1565 (2010)
Baum, C.; Fienemann, M.; Glatzel, S.; Gleixner, G.: Overstory-specific effects of litter fall on the microbial carbon turnover in a mature deciduous forest. Forest Ecology and Management 258 (2), S. 109 - 114 (2009)
Bol, R.; Poirier, N.; Balesdent, J.; Gleixner, G.: Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Communications in Mass Spectrometry 23 (16), S. 2551 - 2558 (2009)
Klumpp, K.; Fontaine, S.; Attard, E.; Le Roux, X.; Gleixner, G.; Soussana, J. F.: Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. Journal of Ecology 97 (5), S. 876 - 885 (2009)
Richter, A.; Wanek, W.; Werner, R. A.; Ghashghaie, J.; Jaggi, M.; Gessler, A.; Brugnoli, E.; Hettmann, E.; Gottlicher, S. G.; Salmon, Y.et al.; Bathellier, C.; Kodama, N.; Nogues, S.; S¢E, A.; Volders, F.; Sorgel, K.; Blochl, A.; Siegwolf, R. T. W.; Buchmann, N.; Gleixner, G.: Preparation of starch and soluble sugars of plant material for the analysis of carbon isotope composition: a comparison of methods. Rapid Communications in Mass Spectrometry 23 (16), S. 2476 - 2488 (2009)
Rubino, M.; Lubritto, C.; D'onofrio, A.; Terrasi, F.; Kramer, C.; Gleixner, G.; Cotrufo, M. F.: Isotopic evidences for microbiologically mediated and direct C input to soil compounds from three different leaf litters during their decomposition. Environmental Chemistry Letters 7 (1), S. 85 - 95 (2009)
Sachse, D.; Kahmen, A.; Gleixner, G.: Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acer pseudoplatanus). Organic Geochemistry 40 (6), S. 732 - 742 (2009)
Xia, Z. H.; Xu, B. Q.; Mügler, I.; Wu, G. J.; Gleixner, G.; Sachse, D.; Zhu, L. P.: retracted: Paleoclimatic implications of the hydrogen isotopic composition of terrigenous n-alkanes from Lake Yamzho, southern Tibetan Plateau. Geochemical Journal 43 (4), S. 275 - 286 (2009)
Habekost, M.; Eisenhauer, N.; Scheu, S.; Steinbeiss, S.; Weigelt, A.; Gleixner, G.: Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biology and Biochemistry 40 (10), S. 2588 - 2595 (2008)
A new study shows that future ecosystem functioning will increasingly depend on water availability. Using recent simulations from climate models, an international team of scientists found several “hot spot regions” where increasing water limitation strongly affects ecosystems. These include Central Europe, the Amazon, and western Russia.
You can't see them with the naked eye, but our forest ground is littered with microorganisms. They decompose falling leaves, thereby improving soil quality and counteracting climate change. But how do these single-celled organisms coordinate their tasks? An international research team has been looking into this little-understood process. The results of the study were recently published in Scientific Reports.
Scientists have succeeded in detecting changes in carbon dioxide emissions from fossil fuels much faster than before. Using a new method, they combined atmospheric measurements of carbon dioxide (CO2) and oxygen (O2) from the north coast of the United Kingdom. The study, with the participation of the Max Planck Institute for Biogeochemistry, was published Apr. 22 in Science Advances.
International researchers found a pattern of extreme climate conditions leading to forest dieback. To do this, the team had collected worldwide records of climate-related tree and forest dieback events over the past nearly five decades. The results, recently published in Nature Communications, reveal an ominous scenario for forests in the context of ongoing global warming.
International forest experts analyzed major tree and forest dieback events that occurred globally in the last decades in response to climate extremes. To their surprise many forests were strongly affected that were not considered threatened based on current scientific understanding. The study, led by the MPI-BGC and published in Annual Reviews in Plant Biology, underscores also that further tree and forest dieback is likely to occur.
An international research team succeeded in identifying global factors that explain the diversity of form and function in plants. Led by the University of Zurich, the Max Planck Institute for Biogeochemistry in Jena and the University of Leipzig, the researchers collected and analyzed plant data from around the world.
Precisely how does a forest system and the individual plants within it react to extreme drought? Understanding the processes involved is crucial to making forests more resilient in the increasingly dry climate that will result from climate change, and also important for refining climate models. A research team led by Prof. Dr. Christiane Werner from the University of Freiburg has conducted the most extensive experiment to date into this subject using stable isotopes to trace flows of water and carbon through a forest.
The increasing amount of greenhouse gases in the atmosphere is causing our climate to warm at an alarming rate. Information is vital for societies who must decide on pathways to climate neutrality. The European ICOS research structure, including Max-Planck Institute for Biogeochemistry, provides this information, as described in a recent article.
Ecosystems provide multiple services for humans. However, these services depend on basic ecosystem functions which are shaped by natural conditions like climate and species composition, and human interventions. A large international research team, led by the Max Planck Institute for Biogeochemistry, Jena, identified three key indicators that together summarize the integrative function of terrestrial ecosystems.
The recent Greenhouse gas Bulletin, published by the World Meteorological Organization (WMO), highlights the importance of measuring greenhouse gases in the atmosphere to monitor emissions of such climate-threatening compounds.
A new study shows that, in addition to species richness, plant evolutionary history plays a critical role in regulating year-to-year variation of biomass production in grasslands. In the face of climate change, understanding the causes of variability in key ecosystem services such as biomass production is essential.
For a long time, the Montreal protocol has been taken as a success story on how to implement an international agreement on environmental sustainability. It was key to protect the Earth's ozone layer. Recently, however, researchers found out that chlorofluorocarbon (CFC) emissions have been increasing again.