Oelmann, Y.; Buchmann, N.; Gleixner, G.; Habekost, M.; Roscher, C.; Rosenkranz, S.; Schulze, E.-D.; Steinbeiss, S.; Temperton, V. M.; Weigelt, A.et al.; Weisser, W. W.; Wilcke, W.: Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: Development in the first 5 years after establishment. Global Biogeochemical Cycles 25 (2), GB2014 (2011)
Seifert, A.-G.; Trumbore, S.; Xu, X. M.; Zhang, D. C.; Kothe, E.; Gleixner, G.: Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation. Geochimica et Cosmochimica Acta 75 (10), S. 2557 - 2570 (2011)
Kuhn, T. K.; Krull, E. S.; Bowater, A.; Grice, K.; Gleixner, G.: The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry 41 (2), S. 88 - 95 (2010)
Reiche, M.; Gleixner, G.; Kusel, K.: Effect of peat quality on microbial greenhouse gas formation in an acidic fen. Biogeosciences 7 (1), S. 187 - 198 (2010)
Sachse, D.; Gleixner, G.; Wilkes, H.; Kahmen, A.: Leaf wax n-alkane δ D values of field-grown barley reflect leaf water δD values at the time of leaf formation. Geochimica et Cosmochimica Acta 74 (23), S. 6741 - 6750 (2010)
Thoms, C.; Gattinger, A.; Jacob, M.; Thomas, F. M.; Gleixner, G.: Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology and Biochemistry 42 (9), S. 1558 - 1565 (2010)
Baum, C.; Fienemann, M.; Glatzel, S.; Gleixner, G.: Overstory-specific effects of litter fall on the microbial carbon turnover in a mature deciduous forest. Forest Ecology and Management 258 (2), S. 109 - 114 (2009)
Bol, R.; Poirier, N.; Balesdent, J.; Gleixner, G.: Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Communications in Mass Spectrometry 23 (16), S. 2551 - 2558 (2009)
Klumpp, K.; Fontaine, S.; Attard, E.; Le Roux, X.; Gleixner, G.; Soussana, J. F.: Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. Journal of Ecology 97 (5), S. 876 - 885 (2009)
Richter, A.; Wanek, W.; Werner, R. A.; Ghashghaie, J.; Jaggi, M.; Gessler, A.; Brugnoli, E.; Hettmann, E.; Gottlicher, S. G.; Salmon, Y.et al.; Bathellier, C.; Kodama, N.; Nogues, S.; S¢E, A.; Volders, F.; Sorgel, K.; Blochl, A.; Siegwolf, R. T. W.; Buchmann, N.; Gleixner, G.: Preparation of starch and soluble sugars of plant material for the analysis of carbon isotope composition: a comparison of methods. Rapid Communications in Mass Spectrometry 23 (16), S. 2476 - 2488 (2009)
Rubino, M.; Lubritto, C.; D'onofrio, A.; Terrasi, F.; Kramer, C.; Gleixner, G.; Cotrufo, M. F.: Isotopic evidences for microbiologically mediated and direct C input to soil compounds from three different leaf litters during their decomposition. Environmental Chemistry Letters 7 (1), S. 85 - 95 (2009)
Sachse, D.; Kahmen, A.; Gleixner, G.: Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acer pseudoplatanus). Organic Geochemistry 40 (6), S. 732 - 742 (2009)
Xia, Z. H.; Xu, B. Q.; Mügler, I.; Wu, G. J.; Gleixner, G.; Sachse, D.; Zhu, L. P.: retracted: Paleoclimatic implications of the hydrogen isotopic composition of terrigenous n-alkanes from Lake Yamzho, southern Tibetan Plateau. Geochemical Journal 43 (4), S. 275 - 286 (2009)
Habekost, M.; Eisenhauer, N.; Scheu, S.; Steinbeiss, S.; Weigelt, A.; Gleixner, G.: Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biology and Biochemistry 40 (10), S. 2588 - 2595 (2008)
Extreme Niederschläge sollten bei wärmeren Temperaturen stärker werden. Messdaten aus den Tropen zeigen, dass die abkühlende Wirkung von Wolken diesen Zusammenhang verschleiert. Korrigiert man die Wolkeneffekte, wird klar dass steigende Temperaturen extreme Niederschläge verstärken.
Niederschläge im Amazonas-Regenwald lassen massenhaft natürliche Nanopartikel entstehen, die zur Bildung von Wolken und weiteren Regenfällen führen können
Der Klimawandel verändert die globalen Wasserkreisläufe. Dabei wird der Regen anders verteilt: In der Mittelmeerregion kommt es einerseits zu längeren und intensiveren Dürren und andererseits zu mehr und heftigerem Starkregen. Modelle mit höherer Auflösung sollen Wetterextreme regional und lokal ebenso präzise voraussagen wie die Auswirkungen unter anderem auf die Landwirtschaft.
Die Temperaturen an der Landoberfläche werden hauptsächlich durch die Erwärmung durch Sonnenlicht, aber auch durch Verdunstung und konvektive Wärmeübertragung in der Vertikalen bestimmt. In einer neuen Studie wurde die Rolle dieser beiden Prozesse mit Hilfe einer physikalischen Leistungsgrenze bestimmt.
Die Umsatzzeiten des Kohlenstoffs an Land bestimmen die Auswirkungen von Klima-veränderungen auf die Landoberfläche. Die Temperaturempfindlichkeit des Kohlen-stoffumsatzes ist daher von entscheidender Bedeutung. Unsere neue Studie belegt, dass die Feuchtebedingungen die Temperaturempfindlichkeit der Kohlenstoffumsatzzeiten stark verändern.
Eine neue Studie zeigt, dass bereits ein geringer Anstieg des atmosphärischen CO2 zu erkennbaren Auswirkungen auf die Funktionsweise von Ökosystemen führt. Anhand von Simulationen des am Max-Planck-Institut für Biogeochemie entwickelten Landoberflächenmodells hat ein internationales Team von Wissenschaftler*innen herausgefunden, dass ein erhöhter CO2-Gehalt zunächst Kenngrößen des Kohlenstoffkreislaufs wie die Produktivität der Vegetation und die Ausdehnung der Blattfläche beeinflusst.
Windturbinen brauchen beim massiven Ausbau Platz, um möglichst effizient zu sein. Generell kann Fotovoltaik deutlich mehr Strom erzeugen als Windkraft.
Wichtige Leistungen von Ökosystemen werden künftig zunehmend von der Wasserverfügbarkeit abhängen. Anhand aktueller Simulationen mit Klimamodellen fand ein internationales Forscherteam mehrere Regionen, in denen Wasser zunehmend die Ökosysteme limitiert. Darunter auch Zentraleuropa, der Amazonas und West-Russland.
Die Deutsche Forschungsgemeinschaft (DFG) hat die Förderung von drei Sonderforschungsbereichen (SFB) der Friedrich-Schiller-Universität Jena verlängert. Darunter ist auch der SFB AquaDiva, der in der dritten Förderperiode für die nächsten vier Jahre rund elf Millionen Euro erhält.
Wie effizient Pflanzen Wasser und Kohlendioxid für ihr Wachstum umsetzen, wird von der Verfügbarkeit von Stickstoff und Phosphor sowie deren Gleichgewicht im Ökosystem bestimmt. In einer neuen Studie analysierten Forscher des Max-Planck-Instituts für Biogeochemie in Jena und ihre spanischen Partner die Reaktionen von Pflanzen und deren Umgebung auf die Zugabe dieser Nährstoffe.
Dr. Sönke Zaehle ist seit dem 1. Mai 2020 neuer Direktor am Max-Planck-Instituts für Biogeochemie und übernimmt die Leitung der neuen Abteilung Biogeochemische Signale. Der Geoökologe untersucht, wie sich Landökosysteme und die Atmosphäre gegenseitig beeinflussen, und welche Rolle Nährstoffkreisläufe dabei spielen.
Die Offshore-Windenergie in der Nordsee spielt eine wichtige Rolle bei der europäischen Energiewende. Werden sich diese Windparks, da in den nächsten dreißig Jahren immer mehr davon geplant werden, allmählich der Grenze der tatsächlich vorhandenen Windenergie nähern?