Munassar, S.; Rödenbeck, C.; Galkowski, M.; Koch, F.-T.; Totsche, K. U.; Botia, S.; Gerbig, C.: To what extent does the CO2 diurnal cycle impact flux estimates derived from global and regional inversions? Atmospheric Chemistry and Physics 25 (1), S. 639 - 656 (2025)
Ho, D.; Galkowski, M.; Reum, F.; Botia, S.; Marshall, J.; Totsche, K. U.; Gerbig, C.: Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG. Geoscientific Model Development 17 (20), S. 7401 - 7422 (2024)
Machado, L. A. T.; Kesselmeier, J.; Botia, S.; van Asperen, H.; Andreae, M. O.; de Araújo, A. C.; Artaxo, P.; Edtbauer, A.; Ferreira, R. R.; Franco, M. A.et al.; Harder, H.; Jones, S. P.; Dias-Júnior, C. Q.; Haytzmann, G. G.; Quesada, C. A.; Komiya, S.; Lavrič, J. V.; Lelieveld, J.; Levin, I.; Nölscher, A.; Pfannerstill, E.; Pöhlker, M. L.; Pöschl, U.; Ringsdorf, A.; Rizzo, L.; Yáñez-Serrano, A. M.; Trumbore, S. E.; Valenti, W. I. D.; de Arellano, J. V.-G.; Walter, D.; Williams, J.; Wolff, S.; Pöhlker, C.: How rainfall events modify trace gas mixing ratios in central Amazonia. Atmospheric Chemistry and Physics 24 (15), S. 8893 - 8910 (2024)
de Arellano, J. V.-G.; Hartogensis, O. K.; de Boer, H.; Moonen, R.; González-Armas, R.; Janssens, M.; Adnew, G. A.; Bonell-Fontás, D. J.; Botia, S.; Jones, S. P.et al.; van Asperen, H.; Komiya, S.; de Feiter, V. S.; Rikkers, D.; de Haas, S.; Machado, L. A. T.; Dias-Junior, C. Q.; Giovanelli-Haytzmann, G.; Valenti, W. I. D.; Figueiredo, R. C.; Farias, C. S.; Hall, D. H.; Mendonça, A. C. S.; da Silva, F. A. G.; da Silva, J. L. M.; Souza, R.; Martins, G.; Miller, J. N.; Mol, W. B.; Heusinkveld, B.; van Heerwaarden, C. C.; D’Oliveira, F. A. F.; Ferreira, R. R.; Gotuzzo, R. A.; Pugliese, G.; Williams, J.; Ringsdorf, A.; Edtbauer, A.; Quesada, C. A.; Portela, B. T. T.; Alves, E. G.; Pöhlker, C.; Trumbore, S. E.; Lelieveld, J.; Röckmann, T.: CloudRoots-Amazon22: Integrating clouds with photosynthesis by crossing scales. Bulletin of the American Meteorological Society 105 (7), S. E1275 - E1302 (2024)
van der Woude, A. M.; Peters, W.; Joetzjer, E.; Lafont, S.; Koren, G.; Ciais, P.; Ramonet, M.; Xu, Y.; Bastos, A.; Botia, S.et al.; Sitch, S.; de Kok, R.; Kneuer, T.; Kubistin, D.; Jacotot, A.; Loubet, B.; Herig-Coimbra, P.-H.; Luijkx, D. L. I. T.: Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nature Communications 14, 6218 (2023)
Alves, E. G.; Santana, R. A.; Dias-Júnior, C. Q.; Botia, S.; Taylor, T.; Yáñez-Serrano, A. M.; Kesselmeier, J.; Bourtsoukidis, E.; Williams, J.; de Assis, P. I. L. S.et al.; Martins, G.; de Souza, R.; Júnior, S. D.; Guenther, A.; Gu, D.; Tsokankunku, A.; Sörgel, M.; Nelson, B.; Pinto, D.; Komiya, S.; Rosa, D. M.; Weber, B.; Barbosa, C.; Robin, M.; Feeley, K. J.; Duque, A.; Lemos, V. L.; Contreras, M. P.; Idarraga, A.; López, N.; Husby, C.; Jestrow, B.; Toro, I. M. C.: Intra- and interannual changes in isoprene emission from central Amazonia. Atmospheric Chemistry and Physics 23 (14), S. 8149 - 8168 (2023)
Tangarife-Escobar, A.; Koeniger, P.; Lopez-Moreno, J. I.; Botia, S.; Ceballos-Liévano, J. L.: Spatiotemporal variability of stable isotopes in precipitation and stream water in a high elevation tropical catchment in the Central Andes of Colombia. Hydrological Processes 37 (5), e14873 (2023)
de Arellano, J. V.-G.; Hartogensis, O.; Benedict, I.; de Boer, H.; Bosman, P. J. M.; Botia, S.; Cecchini, M. A.; Faassen, K. A. P.; González-Armas, R.; van Diepen, K.et al.; Heusinkveld, B. G.; Janssens, M.; Lobos-Roco, F.; Luijkx, I. T.; Machado, L. A. T.; Mangan, M. R.; Moene, A. F.; Mol, W. B.; van der Molen, M.; Moonen, R.; Ouwersloot, H. G.; Park, S.-W.; Pedruzo-Bagazgoitia, X.; Röckmann, T.; Adnew, G. A.; Ronda, R.; Sikma, M.; Schulte, R.; van Stratum, B. J. H.; Veerman, M. A.; van Zanten, M. C.; van Heerwaarden, C. C.: Advancing understanding of land–atmosphere interactions by breaking discipline and scale barriers. Annals of the New York Academy of Sciences 1522 (1), S. 74 - 97 (2023)
van der Woude, A. M.; de Kok, R.; Smith, N.; Luijkx, I. T.; Botia, S.; Karstens, U.; Kooijmans, L. M. J.; Koren, G.; Meijer, H.; Steeneveld, G.-J.et al.; Storm, I.; Super, I.; Scheeren, B. A.; Vermeulen, A.; Peters, W.: Near-real-time CO2 fluxes from CarbonTracker Europe for high-resolution atmospheric modeling. Earth System Science Data 15 (2), S. 579 - 605 (2023)
Dias-Júnior, C. Q.; Carneiro, R. G.; Fisch, G.; D’Oliveira, F. A. F.; Sörgel, M.; Botia, S.; Machado, L. A. T.; Wolff, S.; dos Santos, R. M. N.; Pöhlker, C.: Intercomparison of planetary boundary layer heights using remote sensing retrievals and ERA5 reanalysis over Central Amazonia. Remote Sensing 14 (18), 4561 (2022)
Melack, J. M.; Basso, L. S.; Fleischmann, A. S.; Botia, S.; Guo, M.; Zhou, W.; Barbosa, P. M.; Amaral, J. H.F.; MacIntyre, S.: Challenges regionalizing methane emissions using aquatic environments in the Amazon Basin as examples. Frontiers of Environmental Science & Engineering 10, 866082 (2022)
Botia, S.; Komiya, S.; Marshall, J.; Koch, T.; Galkowski, M.; Lavrič, J. V.; Gomes-Alves, E.; Walter, D.; Fisch, G.; Pinho, D. M.et al.; Nelson, B.; Martins, G.; Luijkx, I. T.; Koren, G.; Florentie, L.; de Araujo, A. C.; Sa, M.; Andreae, M. O.; Heimann, M.; Peters, W.; Gerbig, C.: The CO2 record at the Amazon Tall Tower Observatory: a new opportunity to study processes on seasonal and inter-annual scales. Global Change Biology 28 (2), S. 588 - 611 (2022)
Correa, P. B.; Dias-Júnior, C. Q.; Cava, D.; Sörgel, M.; Botia, S.; Acevedo, O.; Oliveira, P. E. S.; Manzi, A. O.; Machado, L. A. T.; Martins, H. d. S.et al.; Tsokankunku, A.; de Araújo, A. C.; Lavrič, J. V.; Walter, D.; Mortarini, L.: A case study of a gravity wave induced by Amazon forest orography and low level jet generation. Agricultural and Forest Meteorology 307, 108457 (2021)
Bezerra, V. L.; Dias-Júnior, C. Q.; Vale, R. S.; Santana, R. A.; Botia, S.; Manzi, A. O.; Cohen, J. C. P.; Martins, H. S.; Chamecki, M.; Fuentes, J. D.: Near-surface atmospheric turbulence in the presence of a squall line above a forested and deforested region in the Central Amazon. Atmosphere 12 (4), 461 (2021)
Botía, S. B.; Gerbig, C.; Marshall, J.; Lavrič, J. V.; Walter, D.; Pölhker, C.; Holanda, B.; Fisch, G.; de Araújo, A. C.; Sá, M. O.et al.; Teixeira, P. R.; Resende, A. F.; Dias-Junior, C. Q.; van Asperen, H.; Oliveira, P. S.; Stefanello, M.; Acevedo, O. C.: Understanding nighttime methane signals at the Amazon Tall Tower Observatory (ATTO). Atmospheric Chemistry and Physics 20 (11), S. 6583 - 6606 (2020)
Botia, S.: Greenhouse gas exchange in the Amazon: Carbon dioxide and methane insights from the Amazon Tall Tower Observatory. Dissertation, 180 S., Wageningen University & Research, Wageningen (2022)
Botia, S.; Dias-Junior, C. Q.; Komiya, S.; van der Woude, A.; Terristi, M.; de Kok, R.; Koren, G.; van Asperen, H.; Jones, S. P.; D'Oliveira, F. A. F.et al.; Weber, U.; Marques-Filho, E.; Toro, I. M. C.; Araújo, A.; Lavric, J.; Walter, D.; Li, X.; Wigneron, J.-P.; Stocker, B.; de Souza, J. G.; O'Sullivan, M.; Sitch, S.; Ciais, P.; Chevallier, F.; Li, W.; Luijkx, I. T.; Peters, W.; Quesada, C. A.; Zaehle, S.; Trumbore, S. E.; Bastos, A.: Reduced vegetation uptake during the extreme 2023 drought turns the Amazon into a weak carbon source. ESS Open Archive (2025)
Glauch, T.; Marshall, J.; Gerbig, C.; Botia, S.; Galkowski, M.; Vardag, S. N.; Butz, A.: pyVPRM: A next-generation Vegetation Photosynthesis and Respiration Model for the post-MODIS era. EGUsphere (2025)
Meunier, F.; Boeckx, P.; Botia, S.; Bauters, M.; Cherlet, W.; Ciais, P.; Hertog, S. D.; Dietze, M.; Peaucelle, M.; Sibret, T.et al.; Sitch, S.; Li, W.; Verbeeck, H.: The impact of the 2023-2024 drought on intact Amazon forests’ productivity. Research Square (2024)
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Die anthropogenen Emissionen von Lachgas (N2O), ein pro Molekül deutlich stärkeres Treibhausgas als Kohlenstoffdioxid oder Methan, stiegen zwischen 1980 und 2020 um etwa 40% an. Im Jahr 2020 erreichten die anthropogenen Emissionen in die Atmosphäre mehr als 10 Millionen Tonnen pro Jahr, so der neue Bericht „Global Nitrous Oxide Budget 2024“ des Global Carbon Project.
Der neue Bericht des Global Carbon Project zeigt: Die fossilen CO2-Emissionen werden 2023 ein Rekordhoch erreichen. Bleiben die Emissionen so hoch, wird das verbliebene Kohlenstoffbudget zur Einhaltung der 1,5°C-Grenze voraussichtlich in sieben Jahren aufgebraucht sein. Die Emissionen aus der Landnutzung nehmen zwar leicht ab, sind aber immer noch zu hoch, um durch nachwachsende Wälder und Aufforstung kompensiert werden zu können.
Das Global Carbon Project stellt seinen neuen Bericht zur globalen Entwicklung des Treibhausgas-Haushalts vor. Für das laufende Jahr werden die CO2-Emissionen etwas höher liegen als vor der Pandemie und damit nur wenig unter dem Höchstwert von 2019. Bleiben die Emissionen weiterhin auf diesem hohen Level, ist eine Stabilisierung des Klimas und die Erreichung der Pariser Klimaziel fraglich.
A new study shows that future ecosystem functioning will increasingly depend on water availability. Using recent simulations from climate models, an international team of scientists found several “hot spot regions” where increasing water limitation strongly affects ecosystems. These include Central Europe, the Amazon, and western Russia.
You can't see them with the naked eye, but our forest ground is littered with microorganisms. They decompose falling leaves, thereby improving soil quality and counteracting climate change. But how do these single-celled organisms coordinate their tasks? An international research team has been looking into this little-understood process. The results of the study were recently published in Scientific Reports.
Scientists have succeeded in detecting changes in carbon dioxide emissions from fossil fuels much faster than before. Using a new method, they combined atmospheric measurements of carbon dioxide (CO2) and oxygen (O2) from the north coast of the United Kingdom. The study, with the participation of the Max Planck Institute for Biogeochemistry, was published Apr. 22 in Science Advances.
Wissenschaftlern ist es gelungen, Veränderungen der Kohlendioxidemissionen aus fossilen Brennstoffen sehr viel schneller als zuvor zu erfassen. Mit einer neuen Methode kombinierten sie atmosphärische Messungen von Kohlendioxid (CO2) und Sauerstoff (O2) von der Nordküste Großbritanniens. Die Studie, unter Beteiligung des Max-Planck-Instituts für Biogeochemie, wurde am 22.04. in Science Advances veröffentlicht.
International researchers found a pattern of extreme climate conditions leading to forest dieback. To do this, the team had collected worldwide records of climate-related tree and forest dieback events over the past nearly five decades. The results, recently published in Nature Communications, reveal an ominous scenario for forests in the context of ongoing global warming.
International forest experts analyzed major tree and forest dieback events that occurred globally in the last decades in response to climate extremes. To their surprise many forests were strongly affected that were not considered threatened based on current scientific understanding. The study, led by the MPI-BGC and published in Annual Reviews in Plant Biology, underscores also that further tree and forest dieback is likely to occur.
An international research team succeeded in identifying global factors that explain the diversity of form and function in plants. Led by the University of Zurich, the Max Planck Institute for Biogeochemistry in Jena and the University of Leipzig, the researchers collected and analyzed plant data from around the world.
Precisely how does a forest system and the individual plants within it react to extreme drought? Understanding the processes involved is crucial to making forests more resilient in the increasingly dry climate that will result from climate change, and also important for refining climate models. A research team led by Prof. Dr. Christiane Werner from the University of Freiburg has conducted the most extensive experiment to date into this subject using stable isotopes to trace flows of water and carbon through a forest.