Pallandt, M.; Schrumpf, M.; Lange, H.; Reichstein, M.; Yu, L.; Ahrens, B.: Modelling the effect of climate–substrate interactions on soil organic matter decomposition with the Jena soil model. Biogeosciences 22 (7), S. 1907 - 1928 (2025)
de Broek, M. V.; Govers, G.; Schrumpf, M.; Six, J.: A microbially driven and depth-explicit soil organic carbon model constrained by carbon isotopes to reduce parameter equifinality. Biogeosciences 22 (5), S. 1427 - 1446 (2025)
Nair, R.; Luo, Y.; El-Madany, T. S.; Rolo, V.; Pacheco-Labrador, J.; Caldararu, S.; Morris, K. A.; Schrumpf, M.; Carrara, A.; Moreno, G.et al.; Reichstein, M.; Migliavacca, M.: Nitrogen availability and summer drought, but not N:P imbalance, drive carbon use efficiency of a Mediterranean tree-grass ecosystem. Global Change Biology 30 (9), e17486 (2024)
Wutzler, T.; Reimers, C.; Ahrens, B.; Schrumpf, M.: Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)). Geoscientific Model Development 17 (7), S. 2705 - 2725 (2024)
Wilcke, W.; Zimmer, V.; Bauhus, J.; Schöning, I.; Schrumpf, M.; Michalzik, B.; Siemen, J.: Disentangling the effects of region, forest‑management intensity and plant diversity on litterfall quantity, quality and turnover in temperate forests. Plant and Soil 497, S. 397 - 412 (2024)
Brandt, L.; Poll, C.; Ballauff, J.; Schrumpf, M.; Bramble, D. S.; Schöning, I.; Ulrich, S.; Kaiser, K.; Mikutta, R.; Mikutta, C.et al.; Polle, A.; Kandeler, E.: Mineral type versus environmental filters: What shapes the composition and functions of fungal communities in the mineralosphere of forest soils? Soil Biology and Biochemistry 190, 109288 (2024)
Neyret, M.; Le Provost, G.; Boesing, A. L.; Schneider, F. D.; Baulechner, D.; Bergmann, J.; de Vries, F.; Fiore-Donno, A. M.; Geisen, S.; Goldmann, K.et al.; Merges, A.; Saifutdinov, R. A.; Simons, N. K.; Tobias, J. A.; Zaitsev, A. S.; Gossner, M. M.; Jung, K.; Kandeler, E.; Krauss, J.; Penone, C.; Schloter, M.; Schulz, S.; Staab, M.; Wolters, V.; Apostolakis, A.; Birkhofer, K.; Boch, S.; Boeddinghaus, R. S.; Bolliger, R.; Bonkowski, M.; Buscot, F.; Dumack, K.; Fischer, M.; Gan, H. Y.; Heinze, J.; Hölzel, N.; John, K.; Klaus, V. H.; Kleinebecker, T.; Marhan, S.; Müller, J.; Renner, S. C.; Rillig, M.; Schenk, N. V.; Schöning, I.; Schrumpf, M.; Seibold, S.; Socher, S.; Solly, E. F.; Teuscher, M.; van Kleunen, M.; Wubet, T.; Manning, P.: A slow-fast trait continuum at the whole community level in relation to land-use intensification. Nature Communications 15, 1251 (2024)
Bramble, D. S.; Ulrich, S.; Schöning, I.; Mikutta, R.; Brandt, L.; Poll, C.; Kandeler, E.; Mikutta, C.; Konrad, A.; Siemens, J.et al.; Yang, Y.; Polle, A.; Schall, P.; Ammer, C.; Kaiser, K.; Schrumpf, M.: Formation of mineral-associated organic matter in temperate soils is primarily controlled by mineral type and modified by land use and management intensity. Global Change Biology 30 (1), e17024 (2024)
Stoner, S.; Trumbore, S. E.; González-Pérez, J. A.; Schrumpf, M.; Sierra, C. A.; Hoyt, A. M.; Chadwick, O.; Doetterl, S.: Relating mineral–organic matter stabilization mechanisms to carbon quality and age distributions using ramped thermal analysis. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230139 (2023)
Stoner, S.; Schrumpf, M.; Hoyt, A. M.; Sierra, C. A.; Doetterl, S.; Galy, V.; Trumbore, S. E.: How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter. Biogeosciences 20 (15), S. 3151 - 3163 (2023)
Brandt, L.; Stache, F.; Poll, C.; Bramble, D. S.; Schöning, I.; Schrumpf, M.; Ulrich, S.; Kaiser, K.; Mikutta, R.; Mikutta, C.: Mineral type and land-use intensity control composition and functions of microorganisms colonizing pristine minerals in grassland soils. Soil Biology and Biochemistry 182, 109037 (2023)
Wutzler, T.; Yu, L.; Schrumpf, M.; Zaehle, S.: Simulating long-term responses of soil organic matter turnover to substrate stoichiometry by abstracting fast and small-scale microbial processes: the Soil Enzyme Steady Allocation Model (SESAM; v3.0). Geoscientific Model Development 15 (22), S. 8377 - 8393 (2022)
Baumann, K.; Eckhardt, K.-U.; Schöning, I.; Schrumpf, M.; Leinweber, P.: Clay fraction properties and grassland management imprint on soil organic matter composition and stability at molecular level. Soil Use and Management 38 (4), S. 1578 - 1596 (2022)
Akinyede, R.; Taubert, M.; Schrumpf, M.; Trumbore, S. E.; Küsel, K.: Temperature sensitivity of dark CO2 fixation in temperate forest soils. Biogeosciences 19 (17), S. 4011 - 4028 (2022)
Morris, K. A.; Richter, A.; Migliavacca, M.; Schrumpf, M.: Growth of soil microbes is not limited by the availability of nitrogen and phosphorus in a Mediterranean oak-savanna. Soil Biology and Biochemistry 169, 108680 (2022)
Der neue Bericht des Global Carbon Project zeigt: Die fossilen CO2-Emissionen werden 2023 ein Rekordhoch erreichen. Bleiben die Emissionen so hoch, wird das verbliebene Kohlenstoffbudget zur Einhaltung der 1,5°C-Grenze voraussichtlich in sieben Jahren aufgebraucht sein. Die Emissionen aus der Landnutzung nehmen zwar leicht ab, sind aber immer noch zu hoch, um durch nachwachsende Wälder und Aufforstung kompensiert werden zu können.
A new study shows that future ecosystem functioning will increasingly depend on water availability. Using recent simulations from climate models, an international team of scientists found several “hot spot regions” where increasing water limitation strongly affects ecosystems. These include Central Europe, the Amazon, and western Russia.
Microorganisms in aquifers deep below the earth’s surface produce similar amounts of biomass as those in some marine waters. This is the finding of researchers led by the Friedrich Schiller University Jena and the German Centre for Integrative Biodiversity Research (iDiv). The study has been published in Nature Geoscience.
You can't see them with the naked eye, but our forest ground is littered with microorganisms. They decompose falling leaves, thereby improving soil quality and counteracting climate change. But how do these single-celled organisms coordinate their tasks? An international research team has been looking into this little-understood process. The results of the study were recently published in Scientific Reports.
Scientists have succeeded in detecting changes in carbon dioxide emissions from fossil fuels much faster than before. Using a new method, they combined atmospheric measurements of carbon dioxide (CO2) and oxygen (O2) from the north coast of the United Kingdom. The study, with the participation of the Max Planck Institute for Biogeochemistry, was published Apr. 22 in Science Advances.
International researchers found a pattern of extreme climate conditions leading to forest dieback. To do this, the team had collected worldwide records of climate-related tree and forest dieback events over the past nearly five decades. The results, recently published in Nature Communications, reveal an ominous scenario for forests in the context of ongoing global warming.
Precisely how does a forest system and the individual plants within it react to extreme drought? Understanding the processes involved is crucial to making forests more resilient in the increasingly dry climate that will result from climate change, and also important for refining climate models. A research team led by Prof. Dr. Christiane Werner from the University of Freiburg has conducted the most extensive experiment to date into this subject using stable isotopes to trace flows of water and carbon through a forest.
Nachdem 2020 die fossilen Kohlendioxid-Emissionen im globalen Schnitt deutlich gesunken waren, nähern sie sich in diesem Jahr wieder dem Niveau von vor der Corona-Pandemie an. Zu diesem Ergebnis kommt das internationale Global Carbon Project, veröffentlicht in einem vorläufigen Bericht.
After fossil carbon dioxide emissions fell significantly on average globally in 2020, they are approaching pre-Corona pandemic levels again this year. This is the conclusion of the international Global Carbon Project. The project is now publishing its preliminary report in the journal Earth System Science Data.
Nachdem 2020 die fossilen Kohlendioxid-Emissionen im globalen Schnitt deutlich gesunken waren, nähern sie sich in diesem Jahr wieder dem Niveau von vor der Corona-Pandemie an. Zu diesem Ergebnis kommt das internationale Global Carbon Project. In der Zeitschrift Earth System Science Data veröffentlicht das Projekt nun seinen vorläufigen Bericht.
The increasing amount of greenhouse gases in the atmosphere is causing our climate to warm at an alarming rate. Information is vital for societies who must decide on pathways to climate neutrality. The European ICOS research structure, including Max-Planck Institute for Biogeochemistry, provides this information, as described in a recent article.
The efficiency of plants to use water and take up carbon dioxide for growth critically depends on the availability of nitrogen, phosphorus and their balance in the ecosystem. In a recent study, researchers of the Max Planck Institute for Biogeochemistry and their Spanish partners analyzed how plants and their environment respond to the addition of these nutrients.